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Abstract. It is shown how specification of behavioural requirements from
informal to formal can be integrated within knowledge engineering. The
integration of requirementsspecification has addressedin particular: the
integration of requirementsacquisition and specification with ontology
acquisition and specification, the relations between requirements
specifications and specifications of task models and problem solving
methods, and the relation of requirements specification to verification.

1 Introduction

Requirements EngineerifRE) addressethe developmentaindvalidation of methods
for eliciting, representinganalysing,and confirming systemrequirementsand with
methods for transforming requirements imore formal specificationsfor designand
implementation.Requirement&ngineeringis one of the early but importantphases
in the software developmentlife cycle and numerous studies have revealed the
misidentificationof requirementss one of the most significant sourcesof customer
dissatisfactionwith deliveredsystems[10], [22], [28]. However, it is a difficult
process, as it involves the elicitaticamalysisand documentatiorof knowledgefrom
multiple stakeholders of the system. There is an increased naeahee the usersat
this stage of the development life-cycle [8], 29]. Itésognisedhat the usersarethe
expertsin their work anda thorough understandingf the requirementss achieved
only by promoting effective communicationwith them during the requirements
engineeringprocess[3]. It is also arguedthat an effective requirementsdefinition
requires involvement and mutual control of the process by all plegratshat a good
partnershipbetweenusersand designersenablesa high quality of the systembeing
developed [19].

Requirements express intended properties of the syatahscenariospecify use-
casesof the intended system (i.e., examplesof intended user interaction traces),
usually employedto clarify requirementsThe processof requirementsengineering



within softwaredevelopmentis an iterative process,in which a sharp borderline
between defining requirements aomhstructingthe systemdesignis not alwayseasy
to draw. Whenran effective stakeholder-develope@ommunicationlink is in place,on
the basisof a (partially) constructeddesign description of the system, additional
information may be elicited from the stakeholders (i.e., doregperts,users,system
customers, managersnd more detailedrequirementsand scenariosan be developed
which refer to this designdescription. Requirementscan be expressedn various
degreesof formality, ranging from unstructuredinformal representationgusually
during initial requirements acquisition) toore structuredsemi-formalrepresentations
and formal representations.

The interleaving of the processof requirementsngineeringand the processof
design is emphasised in current research in thecdréa & Design(e.g.,[16], [17]),
in which it is put forward that realistic design processes include botnangulation
of requirementspecificationsand the manipulationof designobject specifications,
resultingin a detaileddescriptionof a designobjectanda good understandingf the
requirements.This perspectiveon design, applied in particular to the design of
knowledge-intensivesoftware,is employedthroughoutthe paper.This is in contrast
with the tradition in software engineeringto separatethe activity of manipulating
softwarerequirementsrom the ‘design of software’, the actual constructionof the
system design [4], [20], [25], [26].

Principled model-based methodologies kaowledgeengineeringsuchas DESIRE
(cf. [6], [7]), CommonkaDps (cf. [27]) or MIKE (cf. [1]), the emphasisis on
specificationof the (conceptual)model of the systembeing developedand not on
specification of required behaviour properties of a system to be developed.A
transparentistinction betweenspecificationof the structureof a system(or task or
problem solving method) and its (behavioural) properties is not made. For example, in
the Al and Designcommunity a specificationof the structure of a designobject is
often distinguished frona specificationof function or behaviour e.g., [16], [17]. In
recent research in knowledge engineering, identification and formalisatoprties
of knowledge-intensive systemsaddressedjsually in the contextof verification or
competence assessment [2], [9], [14], [15]. Such properéiebe usedas a basisfor
requirement specifications. In this papeisitshownhow specificationof behavioural
requirements from informal to formal can be integrated within knowledge engineering.

From the basic ingredients in knowledge engineemaghodologieghe following
are especially relevant to the integration of requirements specification: knowledge level
approachego problem solving methods(e.qg., [14]), ontologies (e.g., [23]) and
verification (e.g., [9]). It hasto be definedhow requirementspecificationrelatesto
thesebasicingredients.Therefore,integrationof requirementsspecificationwithin a
principled knowledge engineering methodology has to address, in particular:

* integration of requirements acquisition and specification with ontology

acquisition and specification

» relations between requirements specifications and specifications of task models

with tasks at different levels of (process) abstraction, or problem solving
methods

 relation of requirements specification to verification



Theseaspectsare addressedn this paper.The different forms of representatiorof

requirementsand scenariosare presentedn Section2, for reasonsof presentation
illustratedby a simple example.In Section 3 refinementof requirementselatedto

different procesabstractionlevels (e.g., as in task or task/methodhierarchies)is

addressedSection 4 briefly summarizesthe relations between requirementsand

scenarios. Section 5 concludes the paper with a discussion.

2 Representation of Requirements and Scenarios

In the approach presented in this paplee,processesf requirementengineeringand
system developmentare integratedby a careful specification of the co-operation
between the two. The manipulation process of a set of requirementsematiosand
the manipulationprocessof a designobject description(i.e., a description of the
system) are intertwined in the following way: first the set of requirementsand
scenariods madeas preciseas possible.This requiresmultiple interactionwith and
amongthe stakeholdersBasedon that seta possible(partial) descriptionis madeof
the system. The description of the systemis used not only to validate the
understandingf the currentset of requirementsand scenarios,but also to elicit
additional information from the stakeholdersThis leadsto more requirementsand
scenariosand to more detailedrequirementsand scenarios.The processcontinues,
alternating between manipulating a set of requirements and scenarios, and
manipulating a descriptioaf a system.Adequaterepresentationsf requirementsand
scenarios are required for eguéwrt of the overall processand, therefore the relations
between the different representation forms of the saarementbr scenarioneedto
be carefully documented.

One of the underlying assumptions on the apprgaebentedn this paperis that
a compositional design method will lead to desitiret are transparentmaintainable,
and can be (partially) reused within other designs. The constructiooonfipositional
design description of the systeimat properly respectghe requirementsaind scenarios
entails making choices between possible solutions and possible system
configurations.Such choicescan be madeduring the manipulation of the set of
requirementsand scenariosbut also during the manipulationof the design object
description.Eachchoicecorrespond$o an abstractiorievel. For eachcomponentof
the systemdesignfurther requirementsind scenariosare necessaryo ensurethat the
combined system satisfies the overall system requirements and sceRagidiferent
abstractionlevelsin requirementsre reflectedas levels of processabstractionin the
design description during the manipulation of the compositional design description.

Different representationsf requirementsand scenariosare discussedn Sections
2.1 to 2.3. The use of process abstraction levels is expl&inbeérin Section3. An
overview of the relationsbetweenrepresentationsf requirementsand scenarios,and
different levels of process abstraction is presented in Section 4.

In Requirements Engineering the role of scenarios, in additicegidrementshas
gained more importancépth in academiaandindustry practice[13], [30]. Scenarios
or usecasesare examplesof interactionsessiondetweenthe usersand the system
[24], [30]; they are often usedduring the requirementengineeringbeing regardedas



effectiveways of communicatingwith the stakeholdergi.e., domain experts,users,
system customers, managers, and developers). The initial scenarges\eztn verify
(i.e., check the validityn a formal manner)the requirementspecificationand (later)
the systemprototypes.Evaluatingthe prototypeshelps detectingmisunderstandings
between the domain experts and system designers if, for example, the system designers
made the wrong abstractionsbased on the initial scenarios.In our approach
requirementsand scenariodoth are explicitly representedand play a role of equal
importance Having them both in a requirementsengineeringprocess,providesthe
possibility of mutual comparison:the requirementscan be verified against the
scenariosandthe scenarioxan be verified againstthe requirementsBy this mutual
verification process, ambiguitiesdinconsistenciesvithin and betweenthe existing
requirementor scenariosmay be identified, but also the lack of requirementsor
scenarios: scenarios may be identifiedvidnich no requirementsvere formulatedyet,
and requirements may be identified for which no scenarios were formulated yet.

To enableeffectiveways of communicatingwith the stakeholdersrequirements
and scenarios are to bepresentedn a well-structuredand easyto understandnanner
and preciseand detailedenoughto supportthe developmentprocessof the system.
Unfortunately,no standardanguageexistsfor the representatiof requirementsand
scenariosFormatsof varying degreesof formality are usedin different approaches
[25]. Informally representedequirement&nd scenariosare often best understoodby
the stakeholders(although also approachesxist using formal representationsof
requirementsin early stagesas well [11]). Therefore, continual participation of
stakeholdersn the processs possible.A drawbackis that the informal descriptions
are less appropriate when they are used as input to actoaljructa systemdesign.
On the other hand, an advantageof using formal descriptionsis that they can be
manipulatedautomaticallyin a mathematicalway, for examplein the context of
verification and the detection of inconsistencies.Furthermore, the process of
formalising the representationsontributesto disambiguationof requirementsand
scenarios(in contact with stakeholders).At the same time however, a formal
representatioms lessappropriateasa communicationmeanswith the stakeholders.
Therefore, in our approach in the overall development process, different representations
and relations between them are used: informal or structured semi-formal
representationgobtained during the processof formalisation) in contact with
stakeholders and designers of the system, and rétatadl representationto be used
by the designers during the construction of the design.

Independent of the measure of formality, each requirement andeadriocan be
representedn a number of different ways, and/or using different representation
languages. Examples are given below. When manipulating requirements and scenarios,
different activities can be distinguished (see Fig. 1):
¢ requirement@ndscenariosare elicited from stakeholderscheckedfor ambiguities

andinconsistenciesieformulatedin a more preciseor more structuredform, and

represented in differeriorms (informal, semi-formal,andformal) to suit different
purposes (communication with stakeholders, verification of a design description)
« they are refined across process abstraction levels (uwiatidressedh Section3).
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Fig. 1. Representations from informal to formal

requirements and scenarios

2.1 Informal representations

Different informal representationgan be usedto expressthe samerequirementor
scenario.Representationsan be made,for example,in a graphical representation
language, or a natural language, or in combinations of thageagesScenariosfor
instance,can be representedising a format that supportsbranchingpoints in the
processpor in a languagethat only takeslinear structuresinto account.A simple
exampleof a requirementR1 on a systemto control a chemical processis the
following:

Requirement R1
For situations that the temperature and pressure are high the system
shall give a red alert and turn the heater off.

A requirement is generalstatement about the (required) behaviour of the system to be
designedThis statemenis requiredto hold for everyinstanceof behaviourof the
system. In contrast to this, a scenario is a description of a behavitamce(e.g., to
be readas an instanceof a systemtrace the systemhasto show, given the user
behaviour in the scenario). An example of an informal representation of a scenario is:

Scenario S1
The temperature and pressure are high.
A red alert is generated and the heater is turned off

Note that this scenario describes one of the behauistancedor which requirement
R1 holds.
2.2 Structured semi-formal representations

Both requirementsand scenariocan be reformulatedto more structuredand precise
forms.



Requirements. To check requirementsfor ambiguities and inconsistencies,an
analysis that seeks to identify the parts of a given requirement formulation that refer to
the input and output of the systemis useful. Such an analysisoften provokes a
reformulation of the requirement ineomore structuredform, in which the input and
output referencesare made explicitly visible in the structure of the formulation.
Moreoverduring suchan analysisprocessthe conceptsthat relate to input can be
identified and distinguished from the concefptat relateto the output of the system.
Possibly the requirementsplits in a natural mannerinto two or more simpler
requirementsThis often leadsto a numberof new (representationsf) requirements
and/or scenarios. For example, the following requiremeat be found as a result of
such an analysis:

Requirement R1.1:

at any point in time

if the systenreceivedinput that the temperaturds high andthe pressureis
high

then the system shall generate as output aated and an indication that the
situationis explosive,and after the user gives an input that it hasto be
resolved, the system gives output that the heater is turned off

A reformulation can lead to structured requirements in a semi-formaltf@nhprovide
more detail, for example R1 can be reformulated to R1.1, but also to two parts:

Requirement R1la.l:

at any point in time

if the system receivadput that the temperaturées high andthe pressureis
high

then the system shall generateoatput a red alert and an indication that the
situation is explosive

Requirement R1b.1:

at any point in time

if the system provided asitput an indication that the situation is explosive
and after this the user gave aput that it has to be resolved,

then the system shall generatgput that the heater is turned off

Requirement R1a.1 can also be represegtaghically,for example,by (hereeachof
the pairs of arrows means that both arrows of the pair occur at the same time):

ituation is explosive



As a specific case, also requirements referanly to input or only to output canbe
encounteredtEor requirementsormulatedin sucha structuredmannerthe following
classification can be made:
- requirements on input only, independent of outmpgut requirements
« requirements on output only, independent of inputgut requiremenjsand
» requirements relating output to input
The latter type of requirements can be categorised as:

» output is dependent on input (input-output-dependefigggtion or

behaviour requirement

« inputis dependent on output (output-input-dependeray)ironmental

requirement or assumption
When stating propertiesof the environment(which includesusers)of the system
(output-input-dependency), the term ‘requirement’ is avoided and the term ‘assumption’
is used:the environmentis not within the scopeof the software development;t
cannot betuned’ to exhibit particularproperties As such,only assumptionsanbe
made on its behaviour anqtoperties.The term ‘requirements’is usedfor thoseparts
of the system that are within the scope of designable parts of the system.

In addition, requirements can be categorised according to the kind of profiesjies
referto: static requirementsor requirementskFor nontrivial dynamic requirementsa
temporalstructurehasto be reflectedin the representationThis entails that terms
such asat any point in time’, ‘at an earlierpoint in time’, ‘after’, ‘before’, ‘since’,
‘until’, ‘next’ are used to clarify the temporal relationships between different fragments
in the requirement.

The input and output terms used in the structured reformuldtomsthe basisof
an ontology of inputand output concepts Constructionof this ontology takesplace
during the reformulation of requirements: acquisitodra (domainor task or method)
ontology is integratedwithin requirementsengineering (requirementsengineering
contributesat least to part of the ontology acquisition). For the requirements
engineeringprocesst is very useful to constructan ontology of input and output
concepts. For example, in R1b.1 the concepts indicated below in bold can be acquired.

Requirement R1b.1:

at any point in time

if the system provided as output an indication thatdheation is
explosive,

and after this the user gave an input that it babe resolved,

then the system shall generate output thathéeger is turned off

This ontology laterfacilitatesthe formalisationof requirementsand scenariosasthe
input and output concepts are already defined.
In summary, to obtain a structured semi-formal representation of a requirement, the
following is to be performed:
« explicitly distinguish input and output concepts in the requirement
formulation
» define (domain and task/methamtologiesfor input and output information



» classifythe requirement according to the categories above

* makethe temporalstructureof the statemengexplicit using words like, ‘at
any point in time’, ‘at an earlier point in time’, ‘after’, ‘before’, ‘since’,
‘until’, ‘next’.

Scenarios. For scenariosa structuredsemi-formalrepresentations obtained by
performing the following:

« explicitly distinguishinput and outputoncepts in the scenario description

« define (domainpntologiesfor the input and output information

» represent the temporal structure described implicitly in the sequence of events.

The scenario S1 shown earlier is reformulated into a structured semi-formal
representation S1.1:

Scenario S1.1

- input: temperature is high, pressure is high
- output: red alert, situation is explosive

- input: to be resolved

- output: heater is turned off

Notice that from this scenario, which covers bmuirementgiven above,it is not
clear whether or not always an inpoitbe resolvedeads to the heater being turned off,
independent of what preceded this input, or whether this slolydhappenwhenthe
history actually was as describedn the first two lines of the scenariolf the second
partof the scenariois meantto be history independentthis secondpart is better
specified as a separate scenario. However, we assunie tha exampleat leastthe
previousoutput of the systemsituationis explosiveon which the user reactsis a
conditionfor the secondpart of the scenario(as also expressedn the requirements
above). These considerations lead togpktting of scenarioS1.1 into the following
two (temporally) independent scenarios Sla.l and S1b.1:

Scenario Sla.l
- input: temperature is high, pressure is high
- output: red alert, situation is explosive

Scenario S1b.1

- output: situation is explosive
- input: to be resolved
- output: heater is turned off

2.3 Formal representations

A formalisationof a scenariocanbe madeby using formal ontologiesfor the input
andoutput, and by formalising the sequenceof eventsas a temporaltrace. Thus a
formal temporalmodelis obtained for exampleas definedin [7] and[9]. To obtain
formal representationsf requirementsthe input and output ontologieshaveto be



chosenas formal ontologies. In the examplethis can be done, for example by
formalising a conceptual relation of the form A islith as meaningthat the object

A has property B, in a predicate form: B(A); for example ‘the situation is explosive’ is
formalisedby explosive(situation), wheresituation iS an object and explosive a predicate.
This format can be usedlithin an appropriatesubsetor extensionof predicatelogic.

For example, requirementR1a.1 can also be representedformally in combined
symbolic and graphical form by the following:

Temperature(high

pressure(high’ explosive(situation’

In addition,the temporalstructure,if presentn a semi-formalrepresentationhasto
be expressed in a formal manner. Usingftirenal ontologies,anda formalisationof
the temporalstructure,a mathematicallanguageis obtainedto formulate formal
requirementepresentationsThe semanticsare basedon compositionalinformation
stateswhich evolve over time. An information state m of a componento is an
assignment of truth valuesu, faise, unknown} to the setof groundatomsthat play a
role within p. The compositionalstructureof o is reflectedin the structureof the
information state. The set of all possible information statesi®flenoted bysp). A
trace O of a componentb is a sequenc®f information statesmy, ¢ N in  1S(D).
Given a trace M_ of componentp, the information state of the input interface of
component at time point ¢ of the componenb is denotedby statep(M , t, input(C)),
wherec is eitherp or a sub-componendf b. Analogously, statep(M , t. output(C)),

denotes the information state of the output interface of comporantmepoint + of
the componemt. These formalised information states carrddatedto statementvia
the formally definedsatisfactionrelation=. Behaviouralpropertiescan be formulated
in a formal manner, using quantfiers over time #musuallogical connectivessuch
as not, & =. An alternativeformal representatiorof temporal properties (using
modal and temporadperators)within TemporalMulti-Epistemic Logic canbe found
in [12]. For example, requirement R1b.1 can be represented formally by:

Requirement R1b.2:

VgM,t [ stateg(OM, t, input(S)) F to_be resolved &
Jr<t stateg(OM, t, output(S)) = explosive(situation) =>
>t stateg(OM,, t, output(S)) F turn_off(heater) ]

In this formalisationof R1b.1 the word “after” is representedby indicating that the
time pointt at whichto_be_resolved appeared on the input is greatikan sometime
pointt’ at which the system reported that the situation is explosive on its output.

Scenario S1.1 can be represented formally by the temporal modesl tedinedas
follows:



Scenario S1.2:

stateg(OM, 1, input(S)) E high(temperature)
stateg(OM, 1, input(S)) E high(pressure)
stateg(OM,, 2, output(S)) E explosive(situation)
stateg(OM, 2, output(S)) E red_alert
stateg(OM, 3, input(S)) E to_be_resolved
stateg(OM, 4, output(S)) E turn_off(heater)

To summarise, formalisation of a requiremenscenarioon the basisof a structured
semi-formal representation is achieved by:

» choosingformal ontologiedor the input and output information

» formalisation of theemporal structure
This results in a temporal formula F for a requirement andémgoralmodel oW for
a scenatrio.

Checking atemporalformula, which formally representsa requirementagainsta
temporalmodel, formally representing scenariomeansthat formal verification of
requirements against scenarios can be done by model checking. A formal
representatiogM_of a scenarioS anda formal representatio of a requirementare
compatibleif the temporalformulais truein the model. For example the temporal
formula R1b.2is indeedtrue for the model S1.2: the explosivesituation occurredat
time point 2 in the scenario,at time point 3 (which is later than 2) the system
received inputo_be_resolved, and at time point 4 (again later than 3), the systenafas
outputturn_off(heater).

However,requiremenfR1b.2 would also be true in the following two scenarios.
ScenarioS2 is an exampleof a situationin which the systemturns off the heater
whenthis is not appropriate scenarioS3 is an exampleof a situationin which the
system waits too long before it turns off the heater (which might lead to an
explosion).

Scenario S2

The temperature and the pressure are high

The system generates a red alert and turns off the heater,
The temperature and the pressure are medium

The temperature is low and the pressure is medium

The system turns off the heater

Scenario S3

The temperature and the pressure are high

The system generates a red alert and turns off the heater,
The system increases the heater

The system increases the heater

An explosion occurs

The system turns off the heater



Furthermorethe requirementwould also be true in a scenarioin which the system
waited with turning off the heater, maybe even first increasing the hestrizetime.
This last scenario is formalised as scenario S3.1:

Scenario S3.1:

stateg(OM, 1, input(S)) E high(temperature)
stateg(OM, 1, input(S)) E high(pressure)
stateg(OM, 2, output(S)) E explosive(situation)
stateg(OM, 2, output(S)) E red_alert
stateg(OM, 3, input(S)) E to_be_resolved
stateg(OM, 4, output(S)) E increase(heater)
stateg(OM, 5, output(S)) E increase(heater)
stateg(OM, 6, input(S)) E occurred(explosion)
stateg(OM, 7, output(S)) E turn_off(heater)

In other words, requirementR1b.2 leavestoo many possibilities for the system’s
behaviour, and, being a formalisationR®1b.1, so do the requirementshat form the
reason for formulating R1b.1, i.e., R1la.l, and R1.1. During the requirement
engineeringprocesshis hasto be resolvedin contactwith the stakeholdersin this
case, the semi-formal R1.1 and R1a.1, anddhmal R1a.2 haveto be reformulated:
after a discussion with the stakeholders, R1.1 is reformulated into:

Requirement R1.2:

at any point in time

if the systenreceivedinput that the temperaturds high andthe pressureis
high

then at the next point in time tystemshall generateas output a red alert
and an indication that the situation is explosive, and at the next poiime
after the user gives an input that it hasto be resolved,the systemgives
output that the heater is turned off

Requirement R1b.1 is reformulated into:

Requirement R1b.3:
at any point in time
if the system provided as output
an indication that thesituation is explosive,
and at the next time point after the user gave an input
that the situation haso be resolved,
then the system shall generate output
that the heater is turned off

Basedon these reformulations(that also affect the ontologies), the requirement
engineers choose a different representation of R1b.2:



Requirement R1b.3:

ng\,t [ stateg(OM, t, input(S)) F to_be_resolved(situation) &
stateg(OM_, prev(t), output(S)) F explosive(situation) =
stateg(OM_, succ(t), output(S)) F tumn_off(heater) ]

RequiremenR1b.3is truein scenarioS1.2 (let prev be the function: n -> n-1 and
succ: n -> n+1), but not in the sketched unwanted scenarios like S3.1.

3 Requirements Refinement and Process Abstraction Levels

The requirements engineering procesasiderghe systemasa whole, in interaction
with its stakeholders. However, during a design process, often a fatruofuringof
the systemis used: sub-processesre distinguished,for example in relation to
development or selection oftask or task/methochierarchy.For the processesit the
next lower processabstractionlevel, also requirementscan be expressedThus a
distinction is made betweeatakeholder requiremensndstakeholder scenarioor the
top level of the system,elicited from stakeholderssuch as users,customers)and
designer requirementmddesignerscenarios(for the lower processabstractionlevels,
constructedby requirementengineersand designers).Designer requirementsand
scenarios are dependent on a descriptidh@bystem.Requirement®n propertiesof
a sub-component of gystemresideat a next lower level of processabstractiorthan
the level of requirements on properties of the systeeif; often setsof requirements
at a lower level are chosenin sucha way that they realise a next higher level
requirement.This defines a processabstractionlevel refinementrelation between
requirementsTheseprocessabstractiorrefinementrelationshipscan also be usedto
validate requirementse.g., if the refinementsof a requirementto the next lower
processabstractionlevel all hold for a given systemdescription,then the refined

requirement can be proven to hold for that system description. Similarly, scenarios can

be refinedto lower processabstractionievels by addingthe interactionsbetweenthe
sub-processegit eachlevel of abstraction,requirementsand scenariosemploy the
terminology defined in the ontology for that level. In #deampleusedabove,for the
structured semi-formal requirements two processes can be distinguished:

interpret process info
input information of type: temperature is high, pressure is high
output information of type: situation is explosive

generate actions
input information of type: situation is explosive
output information of type: red alert, heater is turned off

At the next lower abstraction level tfesetwo processeshe following requirements
can be formulated, as a refinement of the requirements given earlier:
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interpret process info

Requirement R1int.1:

at any point in time

if the component receivedput that the temperature is high and the pressure
is high

then the component shall generateoatput an indicationthat the situation

is explosive

generate actions

Requirement Rlacta.l:

at any point in time

if the component receivedput that the situation is explosive ,
then the component shall generateoatput a red alert

Requirement Rlactb.1:

at any point in time

if the component receivedput that the situation is explosive,

and after this it received amput that it has to be resolved,

then the component shall generatgput that the heater is turned off

Furthermore, scenarios Sla.1 and S1b.1 given earlier can be refined to

Scenario Slinta.1l

- system input: temperature is high, pressure is high
- interpret process info input:  temperature is high,

pressure is high

- interpret process info output: situation is explosive
- generate actions input: situation is explosive
- generate actions output: red alert

- system output: situation is explosive, red alert



Scenario Slintb.1
- system output: situation is explosive
- system input: to be resolved
- generate actions input: to be resolved
- generate actions output: heater is turned off
- system output: heater is turned off

4 Traceability Relations for Requirements and Scenarios

As requirements and scenarfosm the basisfor communicationramongstakeholders
(including the systemdevelopers)it is importantto maintaina documentin which
the requirementsand scenariosare organisedand structuredin a comprehensivevay.
This document is also important for maintenance of the system oncebiédaimken
into operation.Due to the increasein systemcomplexity nowadays,more complex
requirementsand scenariogesult in documentsthat are more and more difficult to
manage.The different activities in requirementsngineeringlead to an often large
number of inter-related representations of requirements and scenarios.
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Fig. 3. Traceability relations

relations between
requirements and scenarios

The explicit representation of thesaceabilityrelationsis usefulin keepingtrack
of the connections; traceability relationships can be made explicit:

e among requirements at the same process abstraction level (Fig. 1),
* between requirements at different process abstraction levels (Fig. 2),



e among scenarios at the same process abstraction level (Fig. 1),

¢ between scenarios at different process abstraction levels (Fig. 2),

* between requirements and scenarios at the same process abstraction leveR(Figs 1,
and 3)

e among requirements at the same level of formality (Fig. 3)

¢ between requirements and scenarios at the same level of formality (Fig. 3).

These relationshipsare often adequatelyspecified using hyperlinks. This offers

traceability; i.e., relating relevant requirements and scenarios as wel psssibility

to ‘jump’ to definitions of relevant requirements ascknariosThus requirementand

scenariogesultingfrom an extensivecase-studyhave been placedin a hyperlinked

structure [18]; see Fig. 3, which combines Figures 1 and 2.

5 Discussion

Requirements describe the requipgdpertiesof a system(this includesthe functions

of the system,structureof the system,static properties,and dynamicproperties).n
applications to agent-based systems, the dynamics or behaviour of the system plays an
important role in description of th&uccessfubperationof the system.Requirements
specification has both to be informal or semi-formallgmableto discussthem with
stakeholdersandformal (to disambiguateand analysethem and establishwhetheror

not a constructednodelfor a systemsatisfiesthem). Typical software requirements
engineeringpracticesare gearedtoward the developmentof a formal requirements
specification.

The process of making requirements more precise is supported by using both semi-
formal andformal representationfor requirementsPart of this processis to relate
conceptsusedin requirementgo input and output of the system. Since requirement
specifications need system-related concepts, it has been shown how the acgntsition
specification of requirements goes hanchandwith the acquisitionand specification
of ontologies

The formalisationof behaviourrequirementdiasto addresshe semanticsof the
evolution of the system (input and output) statesover time. In this paperthe
semantics of properties of compositional systésnisasedon the temporalsemantics
approach which can be found in the developmentof a compositional verification
method for knowledge-intensive systems; for diagnostic process models see [9]; for co-
operativeinformation gatheringagents,see[21]; for negotiatingagents,see[5]. By
adopting the semantical approach underlyingahimpositionalverification method,a
directintegrationof requirementsengineeringwith the specificationof propertiesof
problem solving methodsnd theiverification could easily be established.

For some example systems requirements and scenarios have been elicited, analysed,
manipulated, and formalised. The lessons learned from these case studies are:

e The processof achievingan understandingpf a requirementinvolves a large
numberof different formulationsand representationgraduallyevolving from
informal to semi-formal and formal.

* Scenariosand their formalisation are, comparedto requirements,of equal
importance.



Categorisationof requirementson input, output and function or behaviour
requirementsand distinguishingthesefrom assumptionn the environment
clarifies the overall picture.

Keeping track on the various relations betweendifferent representationof
requirements,between requirementsand scenarios,and many others, is
supported by hyperlink specifications within a requirements document.

In currentandfuture researchfurther integrationof requirementsengineeringin the
compositional developmentmethod for multi-agent systems, DESIRE and, in
particular, in its software environment is addressed.
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