AISB Journall(1), © 2001
http://www.aisb.org.uk

Automated Servicing of Agents

Frances M. T. Brazier and Niek J. E. Wijngaards

Intelligent Interactive Distributed Systems Group,
Faculty of Sciences, Vrije Universiteit Amsterdam,
de Boelelaan 1081a; 1081 HV Amsterdam, The Netherlands
frances@cs.vu.nl ; niek@cs.vu.nl

Abstract

Agents need to be able to adapt to changes in their environment. One way to
achieve this, is to service agents when needed. A separate servicing facility, an agent
factory, is capable of automatically modifying agents. This paper discusses the feasi-
bility of automated servicing.

1 Introduction

Agents typically operate in dynamic environments. Agents come and go, objects appear
and disappear, and cultures and conventions change. Whenever an environment of an
agent changes to the extent that an agent is unable to cope with (parts of) the environment,
an agent needs to adapt. Changes in the social environment of an agent, for example, may
require modifications to existing agents. A new agent communication language, or new
protocols for auctions, are examples of such changes. An agent may be able to detect
gaps in its abilities; it may not be able to fill these gaps with its own built-in learning
mechanisms. Whether the need for servicing is detected by an agent itself, or by another
agent (automated or human) is irrelevant to the concept involved: external assistance may
be needed to perform the necessary modifications.

This paper discusses the feasibility of a service for automated revision. In Section 2,
needs for adaptation are discussed. An automated servicing facility, an agent factory, is
described in Section 3. An example of adapting an agent, based on an existing prototype
automated servicing service, is provided in Section 4. The feasibility of such a service for
automated revision is discussed in Section 5, in which the agent factory is also compared
to related approaches. The results presented in this paper are discussed in Section 6.

2 Adaptive Agents

Both static and mobile agents may encounter the need for adaptation. In this section an
example is used to illustrate a few situations in which external adaptation is feasible.

The focus in this example is on an information gathering agent. The information gath-
ering agent is assumed to be mobile. Its task is to find information for a researcher about
travel arrangements needed to attend a conference. To this purpose the agent communi-
cates with three other agents (a personal assistant agent, a travel agent, and a bank agent)
and interacts with the World-Wide Web.

Automated Servicing of Agents

Example 1. The personal assistant agent informs the information gathering agent about
its preferences with respect to travel agents, and about the researcher’s travel preferences.
The personal assistant agent has acquired some of this information directly from the re-
searcher, and has acquired some over the course of time from the researcher and from its
own experience. The information gathering agent maintains a profile of the personal as-
sistant agent, and adapts this profile on the basis of interaction with the personal assistant
agent (e.g., as also encountered in negotiation settings (Bui et al., 1996)). Note that in
this example personification is not aimed at personalising an agent’s representation of a
human user (e.g., see (Soltysiak and Crabtree, 1998; Wells and Wolfers, 2000)), but the
profile of the personal assistant agent.

Example 2. The information gathering agent consults the World-Wide Web to find dates
and a location for the aforementioned conference. The conference page is annotated in an
ontology that is unfamiliar to the agent. For exampe, (Fensel et al., 2000; Horrocks

et al., 2001) has been used insteacif. (Bray et al., 2000). One way to approach this
problem is to have the information gathering agent acquire understanding of this ontology.
Another option is to use an intermediary agent (e.g., brokers/matchmakers (Wong and
Sycara, 2000)) to find an agent capable of translating between ontologies, esgAra

(the Simple Object Access Protocol (Box et al., 2000)). In this last case the agent needs
to "travel” and collaborate with its new assistant during interaction with the conference
site.

The information gathering agent also wishes to discuss possible travel arrangements
with the travel agent. The travel agent indicates that it only "speaks” a specific language
and protocol. The information gathering agent needs to acquire this agent language and
protocol. This is comparable to the acquisition of a new ontology sketched above.

Example 3. During the discussion between the information gathering agent and the
travel agent, the issue of credit rating arises. The information gathering agent needs to
prove to the travel agent that it is trustworthy and has an acceptable credit rating. In
addition to security clearance on its own trustworthiness, the information gathering agent
needs additional information from the personal assistant agent. The information gathering
agent needs permission to ask a bank for this information and the name and address of a
specific bank agent. The bank agent, in turn, requires certificates and a guarantee from
the information gathering agent that specific security measures are in place, before it
will provide any other information. If the information gathering agent does not have this
functionality it may be possible to add this functionality to the agent. (Please note that
adding functionality may not be the only measure that needs to be taken in this case.)

In each of the situations sketched above an automated servicing process is to be used.
The types of adaptation involved are:

e Personalisation: an agent can be provided with profiles specific to its current co-
operation partners.

e Domain and languages: an agent can be adapted to include knowledge about a spe-
cific domain to understand a specific agent communication language and protocol.

e Functionality: new functionality or characteristics can be added to (or deleted from)
an agent.

http://www.aisb.org.uk

Brazier and Wijngaards

3 An agent factory

An automated agent servicing facility, an agent factory, is described in this section. The
agent factory, in essence, re-designs descriptions of agents. Previous research (Brazier
etal., 2000a; Brazier et al., 2000b) focussed on automated redesign of multi-agent systems
at a detailed (conceptual) level. The automated servicing service described in this paper
is an extension of this work in two ways.

The first distinction with the previous work is that the agent factory as presented in this
paper is not primarily focussed on re-designing agents on the basis of first principles on a
conceptual level, as described in (Brazier et al., 2000b). The agent factory uses building
blocks to construct, and adapt, agents. Building blocks can be templates, i.e. skeletons
that describe the architecture of a (larger) part of an agent. Components are building
blocks with specific functionality. Templates and components are combined according to
pre-defined rules.

The second distinction with previous work is a broadening of the scope of the re-
design process. The agent factory modifies not only the conceptual description of an
agent, but also its operational code. This necessitates knowledge about the relationship
between the conceptual description and detailed (operational) description of templates
and components.

On the basis of a need for adaptation, the automated servicing process re-configures
templates and components at both levels. Re-configuration (an instance of a re-design
process) of an agent first takes place at the conceptual level: templates and components
are removed and added until a satisfactory conceptual agent description is acquired. On
the basis of the configuration of templates and components in the conceptual description
of an agent a detailed (operational) description of an agent is generated.

To facilitate the automated re-design of agents, a number of assumptions have been
made on the descriptions of an agent (Section 3.1). In addition, the agent factory has a
library of building blocks, the so-called templates and components (Section 3.2). The
configuration task of the agent factory (Section 3.5) is based on knowledge of the char-
acteristics and properties (Section 3.3), and the availability of templates and components
(Section 3.4).

3.1 Assumptions on the design of agents

The feasibility of an automated service for revision of agents depends largely on the as-
sumptions imposed on the design of the agents. The most important underlying assump-
tions for an agent adaptation service used in this paper are as follows.

The first assumption is that agents have a compositional structure. A compositional
structure greatly facilitates the possibilities of adding, removing and changing parts of an
agent. This principle is used throughout software design, ranging from describing pro-
cesses (e.g., JSD (Jackson, 1975)), via object-oriented programming (e.g., (Booch, 1991,
Pressman, 1997; Wieringa, 1996)) to component-based programming (e.g., (Hopkins,
2000)).

The second assumption is that re-usable parts of agents can be identified: templates
(i.e., skeletons) and components (i.e., building blocks). The agent factory can build
an agent by correctly configuring templates and components. This assumption relates
to design patterns (e.g., (Gamma et al., 19943&P®lora and Vadhavkar, 1996; Riel,
1996)) and libraries of software with specific functionality (e.g., problem-solving mod-
els (Schreiber et al., 1999) or generic task models (Brazier et al., 1998)).

http://www.aisb.org.uk

Automated Servicing of Agents

The third assumption is that templates and components are described at two levels of
abstraction: a conceptual description and a detailed description. This assumption circum-
vents two problems. On the one hand, it is difficult to determine a conceptual description
on the basis of a detailed, operational description of (part of) a system (e.g., (Jackson,
1995)). On the other hand, it is again difficult to determine the operational description of
(part of) a system on the basis of a conceptual description (e.g., (Rumbaugh et al., 1999)).
In the case of the agent factory, the detailed description is also an operational description.

The fourth assumption is that properties and knowledge of properties are available
to describe templates and components. Interfaces provided and required by templates
and components need to be described (e.g., as is done in work on describing classes of
diagnostic (non-user-interactive) problem-solving methods by (Benjamins, 1995)).

A fifth assumption is that no commitments have been made to specific languages
and/or ontologies. The languages used for the descriptions of templates and components
on both levels of abstraction are left open, as are the descriptions, and contents, of the
properties and knowledge on properties to describe templates and components. The agent
factory is explicitly developed to be an open architecture.

information gathering

agent
|

co-operative 117 17 1T 1T 1

agent 8 E E E ® T @
template { °©® 3 ° EEC

slots A A /%\A AAA
XML and e

HTML =S =
components < g

Figure 1: Graphical representation of templates and components and their slots.

3.2 Templates and components

Templates and components are the building blocks with which agents are constructed.
Templates are skeletons which describe an architecture of a (larger) part of an agent. A
template is usually combined with a number of (other) templates and/or components. A
component is a building block with specific functionality.

For each conceptual description, a number of detailed, operational descriptions may
be devised. These operational descriptions may differ in the operational language (e.g.,
C, C++, Java), but also in, for example, the efficiency of the operational code.

Templates and components are configurable. However, templates or components can-
not be combined indiscriminately. The open slot concept is used to regulate the ways in
which templates and components may be combined. An open slot in a template or com-
ponent has associated properties that prescribe the properties of the entity to be ’inserted’
in addition to the interface of the required building block.

A mapping relation is defined between building blocks containing conceptual descrip-
tions and building blocks containing detailed descriptions. Each conceptual building
block may be related to a number of detailed building blocks; the inverse may hold as
well.

http://www.aisb.org.uk

Brazier and Wijngaards

Templates specify the architecture of an information gathering agent. In figure 1, the
information gathering agent is shown to consist of seven processes (as explained in Sec-
tion 4). Each of these processes has a slot, which is filled by a combination of templates
and/or components. The open slot for the world interaction management process (wim),
is shown to be filled with two components, which provide specific functionality to interact
with web pages annotated HTML andXML.

An "open-slot preserving” relationship is defined in the mapping relation between
building blocks, so that each open slot in a conceptual template or component is related
to an open slot in the associated detailed template or component. The open-slot preserv-
ing relationship between related conceptual and operational building blocks implies that
templates and components are combined in the same configuration at both levels of ab-
straction. The two-stage revision process facilitates the generation of operational code: on
the basis of the configuration of templates and components at a conceptual level, the de-
tailed, operational code is generated in a relatively straightforward manner, as explained
in the next section.

3.3 Details of templates and components

The building blocks used by the agent factory, templates and components, have the same
structure, as depicted in figure 2. This structure does not make a commitment to specific
conceptual or detailed (operational) description languages, but includes types of informa-
tion that are also included in structures designed to describe design patterns (e.g., (Gamma
etal., 1994)).

r characteristics
- pre-conditions
- properties
I: template or component properties

open slot properties

— template or component description
Figure 2: Structure of templates and components used by the agent factory.

The characteristics of a building block describe its name, creation dates, authors, ver-
sion information, and level of abstraction. This information is not related to the descrip-
tion inside the building block.

The pre-conditions contain assumptions and requirements of the interface of the build-
ing block that have to be satisfied by the environment (i.e., an open slot and the template
or component containing that open slot) in which this building block is to be placed. For
example, a building block which contains a specific sorting algorithm, may require as its
input an unordered list of elements, where each element consists of an unknown part and
an explicit key. In addition, the pre-conditions describe which languages are used in the
description.

The properties of a building block are divided into properties concerning the templates
and components, and properties concerning open slots. Examples of properties of a con-
ceptual template containing a skeleton for an agent are: it is autonomous, it is capable of
communicating with other agents, it is capable of interacting in the world, it is capable of
retaining information on other agents and the world. Properties of an open slot may be,
for example, that a specific open slot contains an agent communication language syntax

http://www.aisb.org.uk

Automated Servicing of Agents

expressed ixML. Template properties at a detailed (operational) level include properties
such as: an agent is a process, the size is so many bytes, and the datastructure is of a spe-
cific class. Properties of open slots are, for example, that the first argument in a specific
open slot contains the input-information for a specific process, and the second argument
contains a pointer to a data structure of a specific class for the results.

3.4 Retrieving building blocks

The agent factory is able to retrieve templates and components on the basis of needs for
adaptation. The re-design process inside the agent factory analyses needs for adaptation
and transforms these into requirements (on structure, functionality, and behaviour) on
agents to be constructed. The agent design is a configuration of templates and components
that satisfies these requirements.

Matching requirements on structure, functionality, and behaviour of (parts of) agents
to properties of templates and components is not trivial. Requirements may be incom-
plete, conflicting, or vague. To solve this problem, a matching process is needed which
has some understanding of the properties involved.

Properties are related to each other in property networks. This allows generic prop-
erties to be, for example, refined into a number of sets of more refined properties. Two
assumptions are made: if a more generic property of an agent holds, then at least one set
of refined properties holds. If all refined properties of one set hold, then the more generic
property also holds.

A number of refinements may exist for a specific property, each of which can be in-
cluded in a refinement tree. Refinement trees can be combined into property networks. In
these networks, it is possible to explore alternative refinements of a property. For exam-
ple, the property that a specific algorithm is a sorting algorithm can be refined into more
specific properties on efficiency, e.g. sorting algorithms in linear time&) (ifog(n))
time, etc. Alternatively, the 'sorting algorithm’ property may be refined into more spe-
cific properties on the number of keys used: one key, one primary key and one secondary
key, etc. Yet another alternative is that this property is, in itself, a refined property of a
property expressing that an algorithm is a classification algorithm.

The matching process has variable forms of interpretation. One form is that no inter-
pretation is used at all (syntactical or exact matching), so that a required property needs
to be explicitly present in a building block. An alternative is to use property refinement:

a high level property (e.g., an algorithm which orders a list of elements) for which no
building block can be found, can be refined into a more specific property (e.g., an algo-
rithm which orders an array of elements@nn?) time), for which a building block can

be found. Usually, a building block will exist with a more specific property, which can
then fulfil the desired property.

A more elaborate means of query interpretation is by traversing semantic property
networks. This usually returns a 'good guess’, but not necessarily an optimal answer as
a building block with similar properties is returned. The notion of 'similar’ can be tuned
(e.g., what distance to travel through property networks).

3.5 The process of adaptation

The agent factory is able to adapt an existing agent on the basis of needs for adapta-
tion. The agent factory re-designs agents. The agent factory first obtains an initial set of
required properties (the needs for adaptation) and a description of the agent to be adapted.

http://www.aisb.org.uk

Brazier and Wijngaards

The initial set of required properties is analysed and manipulated (e.g., interpreted,
conflicts are resolved, etc.) to form a set of refined required properties that are still related
to the initial set, yet are more specific. This may already involve checking the library of
templates and components for the presence of templates and components with specific
properties (it makes no sense to require, for example, a sorting algorithm in O(1/n) time
if there are no such building blocks in the library).

On the basis of such a more specific set of required properties, the conceptual descrip-
tion of the agent is adapted. Building blocks are inserted, moved, and/or deleted, until the
required properties are satisfied if possible. Additional adaptation of the set of required
properties may be necessary (if, for example, the required properties prove to be conflict-
ing). A new set of required properties may be constructed, based on the previous set of
required properties and evaluations of the success or failure in constructing a satisfactory
conceptual description.

4)

information gathering agent

own process
control
agent
interaction
management
world
interaction
management
I agent I
specific task
\§ J

Figure 3: The seven processes inside the information gathering agent. Each process,
including the agent itself, has an interface. Between processes, information transfer is
defined (not shown).

cooperation
management

maintenance
of agent
information

maintenance
of world
information

SN EN
MUY

At some point in this cycle, the conceptual description of an agent is analysed to check
whether it satisfies a specific set of required properties (based on the initial set of required
properties). If this point has been reached, the agent factory focusses on adapting the
detailed, operational description of the agent. If not, the agent factory may adapt the set
of required properties.

The operational description of an agent is based on the configuration of templates
and components in the conceptual description of the agent. If problems occur in combin-
ing operational descriptions from templates and components, either other templates and
components are used (with the same conceptual description and properties, but different
operational description and properties) or a different conceptual description of the agent is
needed. The process described above is then repeated with additional requirements (i.e.,
required properties).

4 Automated servicing of an information gathering agent

In this paper an example is given of an agent that requires servicing. The adaptation of an
information gathering agent in this example is based on an existing prototype automated

http://www.aisb.org.uk

Automated Servicing of Agents

servicing service. The conceptual descriptions of the templates and components are spec-
ified in the DESIRE knowledge-level modelling language (Brazier et al., 1998) and the
operational descriptions are in Java.

The information gathering agent used in this example is based on a template contain-
ing a generic co-operative agent model (Brazier et al., 1996). Figure 3 illustrates the seven
processes distinguished in this generic model. This architecture models an agent that:

e reasons about its own processes (component Own Process Control, or opc),

e communicates with other agents (component Agent Interaction Management, or
aim),

e maintains information about other agents (component Maintenance of Agent Infor-
mation, or mai),

e interacts with the external world (component World Interaction Management, or
wim),

e maintains information about the external world (component Maintenance of World
Information, or mwi),

e participates in project co-ordination (component Co-operation Management, or cm)
and

e the agent’s specific tasks (component Agent Specific Tasks, or ast).

This model of a co-operative agent includes components for management of its own
processes, interaction with other agents including co-operation, interaction with the ex-
ternal (material) world, and an agent’s more specific tasks. In this model, a co-operative
agent receives messages from other agents, and observations in the external world (its
input). It sends messages to other agents and directs its own observations and actions in
the external world (its output).

In this section two examples are given of adaptation of the information gathering
agent. In the first example, the information gathering agent is adapted to include func-
tionality for understanding a new language (Section 4.1). In the second example, the
information gathering agent is adapted to include new functionality for (more) secure
communications and co-operations (Section 4.2).

4.1 Shallow adaptation

Figure 4 depicts the information gathering agent and shows that both the agent interac-
tion management process (aim) and the co-operation management process (cm) are open
slots. The open slot of the agent interaction management process is filled by two com-
ponents providing functionality for understanding a communication language with the
personal assistant agent and an information provider agent (e.g., which provides access to
the World-Wide Web). The open slot of the co-operation management process is filled by
two components providing functionality for understanding how to co-operate (protocols)
with the personal assistant agent and an information provider agent.

One of the needs for adaptation identified in Section 2 was that the information gath-
ering agent needed to interact with the travel agent. The travel agent was able to indicate
that a specific language and protocol was to be employed. One way for the informa-
tion gathering agent to approach this problem is to use the agent factory to have itself

http://www.aisb.org.uk

Brazier and Wijngaards

information gathering
agent

p>— opc—

personal assistannt comm. —>%— aim —

cm ——
ast

>>_ wim —]
>>_ mai —|
>>_ mwi —|
»—

personal assistant prot. >

Figure 4. Partial description of the information gathering agent. The open slots for the
agent interaction management and co-operation management processes are filled with two
components each: agent communication languages and protocols.

information gathering
agent

p>— opc—

PR

personal assistant comm.

>— aim —|

cm ——
ast

>>_ wim —]
>_

>>_ mai —|

>>_ mwi —|

>—

travel-agent comm.
personal assistannt prot.
travel-agent prot.

Figure 5: Partial description of the information gathering agent. The open slots for the
agent interaction management and co-operation management processes are filled with two
components each: agent communication languages and protocols.

http://www.aisb.org.uk

Automated Servicing of Agents

changed, such that it can understand the languages and protocols needed for interaction
with the travel agent.

In the first case, the agent factory searches its libraries of templates and components
and is able to find components that support the functionality required. In addition, these
components contain descriptions at both levels of abstraction, and each description needs
to be linked to the, already existing, description of the information gathering agent. This
results in a description of the information gathering agent, as depicted in figure 5.

The information gathering agent is adapted to include functionality on a language and
protocol for interaction with the travel agent.

First the new components are inserted into the conceptual description of the agent.
Once this has been achieved successfully, the operational parts of the components are
inserted into the operational description of the agent.

4.2 Deep adaptation

In another example in Section 2, one of the needs for adaptation arises from communi-
cation with a bank agent. This agent requires that the information gathering agent uses
specific security functionality. Again, the information gathering agent uses the agent fac-
tory to have itself adapted.

The agent factory now has two goals in adapting the information gathering agent.
Specific security functionality needs to be added, and functionality for understanding a
language and protocol shared with the bank agent. The latter case has been described in
the previous subsection.

information gathering
agent

cm ——

>>_ opc —

S>— aim —|

>>_ wim —|
>>

>>_ mai —]

>>_ mwi —]

>>_ ast |

secure secure
comm. Ccoop.

T
}—[>>—

personal assistant comm.
travel-agent comm.
bank-agent comm.
personal assistant prot.
travel-agent prot
bank-agent prot.

Figure 6: The information gathering agent is adapted to include functionality on secure
communication and co-operation, and functionality on understanding a language and pro-
tocol for interaction with the bank agent.

http://www.aisb.org.uk

Brazier and Wijngaards

Adapting the information gathering agent to include specific security functionality
is translated by the agent factory to the need to adapt the agent to include functionality
for secure communication and secure co-operation (as in both processes security-related
awareness is needed). Two conceptual templates have been retrieved from the library
available to the agent factory: a template for secure communication and a template for
secure co-operation. Both templates can be used together, as can be derived form their
characteristics, and both templates can be embedded in the current configuration of tem-
plates and components. Detailed templates are available for these conceptual templates,
which can also interface with detailed templates and components in the current detailed
configuration of the information gathering agent.

As shown in figure 6, the information gathering agent is modified in a non-trivial
manner: the two new templates are inserted into two of the open slots of the top-most
template, and the original fillings of these open slots are inserted into the open slots of the
new templates.

5 Feasibility

The feasibility of an agent factory hinges on a number of aspects. These aspects are
briefly described in Section 5.1. A comparison of the agent factory to other approaches in
constructing agents in described in Section 5.2.

5.1 Crucial aspects

A number of aspects are crucial to the feasibility of an agent factory. These aspects are
mainly related to building blocks; the templates and components. Inserting templates or
components into an open slot of a template or component involves understanding:

e the properties associated with the interface required by an open slot, which pre-
scribe properties of the interfaces of entities to be inserted,

e how properties relate to each other,

e how a description of the template or component to-be-inserted, can be connected
to an open slot (this may involve a mapping of interfaces expressed in two different
conceptual description languages),

e how multiple components can be inserted into one open slot (cf. to stacking blocks),
especially when different description languages are employed.

Experience with the current prototype has increased confidence in the feasibility of
the agent factory. This prototype is capable of automatically configuring relatively sim-
ple information retrieval agents from a limited set of building blocks. An agent can be
constructed and/or adapted, on the basis of a description of required functionality. This
prototype uses a framework for describing conceptual descriptions basesare (Bra-
zier et al., 1998) (simplified) and operational descriptions based on the programming lan-
guage Java. The performance of the current prototype is limited in both functionality and
resource usage. Current and future research focusses more on improving the functionality
of the agent factory than reducing its resource usage.

More research is needed (and is being conducted) to, e.g., develop ontologies for
building blocks, extend the library with building blocks for other types of agents, and as-
sess genericity and specificity of (descriptions of) building blocks. The use of additional

http://www.aisb.org.uk

Automated Servicing of Agents

frameworks (such as UML) and languages (such as C) is also being pursued. Current
research includes development of a language to describe blueprints (including the config-
uration of building blocks).

An application area in which the agent factory can play an important rgkrisrative
migration(Brazier et al., 2002). In most of today’s agent systems migration of an agent re-
guires homogeneity in the programming language and/or agent platform in which an agent
has been designed. The agent factory supports generative migration: agents can migrate
between non-identifical platforms and need not be written in the same language. Instead
of migrating the 'code’ (including data and state) of an agent, a blueprint of the agent is
transferred. An agent factory generates new code on the basis of this blueprint. A proto-
type is currently being developed as a service of agent-oriented middleware: AgentScape.

5.2 Comparison to other approaches

The agent factory is in some ways comparable to component-based development, agent
construction kits, software reusability, case-based reasoning, configuration design, and
IBROW.

The agent factory’s approach to combining templates and components seems simi-
lar to the approach taken tomponent-based developmeifsoftware (Hopkins, 2000;
Sparling, 2000). One distinction is that our approach includes annotations of templates
and components at two levels of abstraction (conceptual and operational). In component-
based development, interfaces are described for components (which are independent of
an operational language); this corresponds to the descriptions of interfaces of templates
and components and interfaces needed by open slots in templates and components. From
our perspective component-based development provides a useful means to describe oper-
ational descriptions of the building blocks used by the agent factory.

Currently a relatively large number of tools and/or frameworks exists for the (usually
semi-automatickreation of agentgnot automated adaptation). Examples include e.g.
AgentBuilder (Reticular, 1999), D'agents/AgentTCL (Gray et al., 192€))s (Nwana
etal., 1999)NOMADS (Suri et al., 2000), Sensible Agents (Barber et al., 2001), and Tryl-
lian (Tryllian, 2001). All of these approaches commit to a specific operational description
of agents, and in some cases also commit to a specific conceptual description of their
agents. The agent factory does not make such commitments, making the agent factory
more general purpose (with all the common advantages and disadvantages).

The agent factory currently pragmatically circumvents a number of issues related to
software reusabilitye.g., (Biggerstaff and Perlis, 1997)). A major problem is annotat-
ing reusable pieces of software such that they can be retrieved at a later time (by other
people) and reused with a minimal number of changes. In the agent factory the latter is
endeavoured as well. The former is currently solved in a pragmatic way: templates and
components are annotated, and, when needed, a mapping is provided to other annota-
tions. This, however, is not a scalable solution, and, as such, is one of our current foci of
research. An important decision concerning standardisation is that the agent factory does
not aim to adhere to one specific standard, but a number of standards.

In case-based reasonirmgpproaches (e.g., (Kolodner, 1993; Watson and Marir, 1994))
libraries of cases are consulted to find a case which matches a problem, upon which
retrieved cases are adapted. This approach differs from the agent factory in that cases are
modified internally, instead of combined with other cases. Techniques for retrieving cases
from case libraries are, of course, relevant to retrieving templates and components from
libraries.

http://www.aisb.org.uk

Brazier and Wijngaards

The approaches taken bgsign-as-configuratiofe.g., as described in (Stefik, 1995),
CommonKads (Schreiber et al., 1999), and elevator configuration (Schreiber and Birm-
ingham, 1996)) focus on constructing a satisfactory configuration of elements on the basis
of a given set of requirements (also named: constraints). In most of these approaches no
explicit manipulation of requirements is present, nor is a multi-levelled description of the
elements taken into account. Models and theories on configuration-based design are rele-
vant to the agent factory, in particular to the processes involved in combining conceptual
and operational descriptions.

The approach taken is similar, to some extent, to approaches sugR&W (Motta
et al., 1999). InBrROW semi-automatic configuration is supported of intelligent problem
solvers. Their building blocks are 'reusable components’, which are not statically con-
figured, but dynamically 'linked’ together by modelling each building block a®aBA
object. ThecorRBA-0bject provides a wrapper for the actual implementation of a reusable
component. A Unified Problem-solving method development language. (Fensel
etal., 2001) has been proposed for the conceptual modelling of their building blocks. The
agent factory differs in a number of aspects, which include: multiple conceptual and de-
tailed languages, no pre-defined wrappers for detailed building blocks, agents consist of
one process, and the process of reconfiguration is an automated (re-)design process.

6 Discussion

An automated servicing process for agent adaptation is described in this paper. This
servicing process is the task of an agent factory. Agents are constructed from templates
and components. Adapting an agent entails adapting the configuration of templates and
components.

Five assumptions underly our approach: (1) agents have a compositional structure,
(2) re-usable parts of agents can be identified, (3) two levels of descriptions are used:
conceptual and operational, (4) properties and knowledge of properties and interfaces
of re-usable parts of agents are available, and (5) no commitments are made to specific
languages and/or ontologies.

The main advantage of an agent factory as an automated servicing process is that an
agent can easily obtain new functionality, without obliging the agent itself to have its own
adaptation mechanism. During their lifetime agents acquire new skills and knowledge.

The agent factory is still being researched; the current research focusses on:

e building a library of templates and components,

e designing description languages for properties of interfaces of, and knowledge on
the use of, templates and components,

¢ learning from experiences with different conceptual and operational description
languages,

e designing and implementing more extensive prototypes of the agent factory,

e investigating security and trust in using an agent factory.

Acknowledgements

The authors wish to thank the graduate students Hidde Boonstra and David Mobach for
their explorative work on the application of an agent factory for an information retrieving

http://www.aisb.org.uk

Automated Servicing of Agents

agent. This work was supported by NLnet Foundation, http://www.nlnet.nl/.

References

Barber, K., McKay, R., MacMahon, M., Martin, C., Lam, D., Goel, A., Han, D., and
Kim, J. (2001). Sensible agents: An implemented multi-agent system and testbed.
In Proceedings of the Fifth International Conference on Autonomous Agents (Agents-
2001) pages 92—99.

Benjamins, V. (1995). Problem-solving methods for diagnosis and their role in knowl-
edge acquisitioninternational Journal of Expert Systems: Research & Applications
8(2):93-120.

Biggerstaff, T. and Perlis, A., editors (199 Boftware Reusability: Concepts and models
volume 1. New York, ACM Press.

Booch, G. (1991).0Object oriented design with applicationRedwood City, Benjamins
Cummins Publishing Company.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F,,
Thatte, S., and Winer, D. (2000). Simple object access protocol (soap) 1.1. Technical
report, W3C. http://www.w3.0rg/TR/SOAP/.

Bray, T., Paoli, J., Sperberg-McQueen, C., and Maler, E. (2000). Extensi-
ble markup language (xml) 1.0 2nd ed. Technical Report 20001006, W3C.
http://www.w3.0rg/TR/2000/REC-xmI-20001006.

Brazier, F., Jonker, C., and Treur, J. (1998). Principles of compositional multi-agent
system development. In Cuena, J., ediRygceedings of the 15th IFIP World Com-
puter Congress, WCC’98, Conference on Information Technology and Knowledge
Systems, IT&’KNOWS'9pages 347-360.

Brazier, F., Jonker, C., and Treur, J. (2000a). Compositional design and reuse of a generic
agent modelApplied Artificial Intelligence Journafl4:491-538.

Brazier, F., Jonker, C., Treur, J., and Wijngaards, N. (2000b). Deliberate evolution in
multi-agent systems. In Gero, J., editBrpceedings of the Sixth International Con-
ference on Al in Design, AID’200@ages 633—650. Kluwer Academic Publishers.

Brazier, F., Jonker, J., and Treur, J. (1996). Modelling project coordination in a multi-
agent framework. IfProc. Fifth Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WET ICE'9fages 148-155. Los Alamitos, IEEE
Computer Society Press.

Brazier, F., Overeinder, B., van Steen, M., and Wijngaards, N. (2002). Agent factory:
Generative migration of mobile agents in heterogeneous environmerRsodaed-
ings of the AIMS workshop at SAC-20Q8 appear.

Bui, H., Kieronska, D., and Venkatesh, S. (1996). Learning other agents’ preferences
in multiagent negotiation. lProceedings of the National Conference on Artificial
Intelligence (AAAI-96)pages 114-119.

http://www.aisb.org.uk

Brazier and Wijngaards

Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., and Klein, M.
(2000). Qil in a nutshell. In Dieng, R., editdProceedings of the 12th European
Workshop on Knowledge Acquisition, Modelling, and Management (EKAWOR)
ume 1937 oLecture Notes in Artificial Intelligencgages 1-16. Springer-Verlag.

Fensel, D., Motta, E., Benjamins, V., Crubezy, M., Decker, S., Gaspari, M., Groenboom,
R., Grosso, W., van Harmelen, F., Musen, M., Plaza, E., Schreiber, A., Studer, R.,
and Wielinga, B. (2001). The unified problem-solving method development lan-
guage UPML.Knowledge and Information Systents appear.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (199d}ign Patterns: Elements
of reusable object-oriented softwareAddison Wesley Longman, Reading, Mas-
sachusetts.

Gray, R., Kotz, D., Cybenko, G., and Rus, D. (199¥t Tc) chapter 4, pages 58-95.
Manning Publishing. W. Cockayne and M. Zyda, editor.

Hopkins, J. (2000). Component prim&ommunications of the ACM3(10):27-30.

Horrocks, I., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brickley, D., Con-
noly, D., Dean, M., Decker, S., Fensel, D., Hayes, P., Heflin, J., Hendler, J., Lassila,
O., McGuinness, D., and Stein, L. (2001). Daml+oil. Technical report, DAML.
http://www.daml.org/2001/03/daml+oil-index.html.

Jackson, M. (1975)Principles of Program DesignAcademic Press.

Jackson, M. (1995)Software Requirements and SpecificatioAddison-Wesley, Wok-
ingham, England.

Kolodner, J. (1993)Case-Based Reasoninlorgan Kauffman, San Mateo, California.

Motta, E., Fensel, D., Gaspari, M., and Benjamins, V. (1999). Specifications of knowledge
component reuse. IRroceedings of the 11th International Conference on Software
Engineering and Knowledge Engineering (SEKE;$)ges 17-19, Kaiserslautern,
Germany.

Nwana, H., Ndumu, D., Lyndon, L., and Collis, J. (1999). Zeus: A toolkit and approach
for building distributed multi-agent systems. Rroceedings of the Third Interna-
tional Conference on Autonomous Agents (Autonomous Agentp@$s 360—-361.

Pena-Mora, F. and Vadhavkar, S. (1996). Design rationale and design patterns in reusable
software design. In Gero, J. and Sudweeks, F., editrtficial Intelligence in
Design (AID'96) pages 251-268, Dordrecht, The Netherlands. Kluwer Academic
Publishers.

Pressman, R. (19975oftware Engineering: A practitioner’'s approackComputer Sci-
ence. McGraw-Hill, fourth edition.

Reticular (1999)AgentBuilder: An integrated toolkit for constructing intelligent software
agents Reticular Systems Inc, white paper edition. http://www.agentbuilder.com.

Riel, A. (1996). Object-Oriented Design HeuristiciAddison Wesley Publishing Com-
pany, Reading Massechusetts.

Rumbaugh, J., Jacobson, I., and Booch, G. (1998 unified modeling language refer-
ence manualAddison Wesley, Reading, Massachusetts.

http://www.aisb.org.uk

Automated Servicing of Agents

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de Velde,
W. V., and Wielinga, B. (1999Knowledge Engineering and Management, the Com-
monKADS MethodologyMIT press.

Schreiber, G. and Birmingham, W. (1996). Special issue on sisyphuisternational
Journal of Human-Computer Studies (IJHC&2. editors.

Soltysiak, S. and Crabtree, B. (1998). Knowing me, knowing you: Practical issues in the
personalisation of agent technology.Rroceedings of the third international confer-
ence on the practical applications of intelligent agents and multi-agent technology
(PAAM98) pages 467-484, London.

Sparling, M. (2000). Lessons learned through six years of component-based development.
Communications of the ACM3(10):47-53.

Stefik, M. (1995). Introduction to Knowledge System#lorgan Kaufmann Publishers
Inc., San Francisco, California.

Suri, N., Bradshaw, J., Breedy, M., Groth, P., Hill, G., Jeffers, R., Mitrovich, T., Pouliot,
B., and Smith, D. (2000). Nomads: Toward a strong and safe mobile agent system.
In Proceedings of the Fourth International Conference on Autonomous Agaigiss
163-164. ACM Press.

Tryllian (2001). Agent development Kkit. Technical report, Tryllian.
http://www.tryllian.com/subdocumentation/whitepapers/english/Technical ~ white
paper ADK v1.0.pdf.

Watson, I. and Matrir, F. (1994). Case-based reasoning: a revVibev.Knowledge Engi-
neering Reviewd(4):327-354.

Wells, N. and Wolfers, J. (2000). Finance with a personalized toGommunications of
the ACM, Special Issue on Personalizatid3(8):31-34.

Wieringa, R. (1996)Requirements Engineering: Frameworks for Understandifvijey
and Sons.

Wong, H.-C. and Sycara, K. (2000). A taxonomy of middle-agents for the internet. In
Proceedings of the Fourth International Conference on Multi-Agent Systems (IC-
MAS’2000) pages 465—466.

http://www.aisb.org.uk

