
Agent Factory: Generative Migration of Mobile Agents in
Heterogeneous Environments

F.M.T. Brazier, B.J. Overeinder, M. van Steen, and N.J.E. Wijngaards
Department of Computer Science, Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{frances,bjo,steen,niek}@cs.vu.nl

ABSTRACT
In most of today’s agent systems migration of agents requires

homogeneity in the programming language and/or agent platform
in which an agent has been designed. In this paper an approach is
presented with which heterogeneity is possible: agents can migrate
between non-identical platforms, and need not be written in the
same language. Instead of migrating the “code” (including data
and state) of an agent, a blueprint of an agent’s functionality is
transferred. An agent factory generates new code on the basis of
this blueprint. This approach ofgenerative mobilitynot only has
implications for interoperability but also for security, as discussed
in this paper.

Keywords
mobile agents, process migration, compositional design

1. INTRODUCTION
In a global, distributed computer infrastructure, in which the In-

ternet provides connectivity, mobile agents are seen as a promising
computational approach to distributed computing, resource man-
agement, and security.

Mobile agents allow for computations to dynamically adapt to a
changing environment, for example by migrating at runtime from
one machine to another. The decision to migrate is taken autono-
mously by the mobile agent itself. The ability to migrate provide
mobile agents a means to overcome the high latency or limited
bandwidth problem of traditional client-server interactions by mov-
ing the computation to the required resources or services. The cur-
rent evolution of intelligent and active networks in system and net-
work management, for example, is based on this technology. A
similar tendency is observed in the search and filtering of glob-
ally available information such as in the electronic marketplaces,
e-commerce, and information retrieval on the World Wide Web [8].

To support agent mobility a distributed system needs provisions
to physically migrate units of computation at runtime. This migra-
tion includes relocation of an agent’s code base and state to another
platform. Code and state migration is a complex task with techni-
cal complications such as binary incompatibility of two heteroge-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2002, Madrid, Spain
Copyright 2002 ACM 1-58113-445-2/02/03...$5.00.

neous platforms. The current solution to migration of active units
of computation is to provide homogeneous platforms, either phys-
ically such that binary checkpoints can be restarted at another lo-
cation, or virtually by using virtual machines, e.g., the Java Virtual
Machine, providing a machine independent platform. The homo-
geneity requirement, physical or virtual, is a strong requirement:
mobility is otherwise impossible.

Another important issue in mobile agents technology is security.
In most current systems trust in the owners and in the machines
on which an agent has previously run, are the basis for a security
model. Code signing and certificates are the techniques used to this
purpose.

This paper presents a completely new approach to agent mobil-
ity. Not the code migrates, but an agent’s blueprint and state. A
receiving platformregeneratesa mobile agent as it migrates to its
new location. Homogeneity is no longer required: an agent pro-
grammed in Java can be transformed to, for example, a Python im-
plementation of the agent with the same functionality. Trust in an
agent coming from another machine increases considerably if the
receiving platform uses its own trusted components to reconfigure
an agent.

Section 2 discusses mobility of processes and agents in more
detail. Section 3 describes the concept of an agent factory. Hetero-
geneous migration based on this concept is the topic of Section 4.
Implications of this approach for heterogeneous migration and se-
curity are discussed at more length Section 5. Section 6 sums up
the results and proposes future research.

2. BACKGROUND
An agent in a mobile agent system is typically associated with a

unit of computation which resides in the lower layers of a virtual
machine. A unit of computation is composed of the code describing
its behavior, of the data associated with it, and of its execution state.
Mobile agent systems allow migration of the whole unit or a part
thereof, i.e., one or more of the three constituents mentioned above.
The most relevant differences among existing systems lie exactly in
what is moved and how [17].

A distinction can be drawn based on whether the execution state
is migrated along with the unit of computation or not. Systems
providing the former option are said to supportstrong mobility,
as opposed to systems that discard the execution state across mi-
gration, and are hence said to provideweak mobility. In systems
supporting strong mobility, migration is completely transparent to
the migrated program, whereas with weak mobility, extra program-
ming is required in order to manually save part of the execution
state.

Strong mobility as found in NOMADS [21], Ara [15], and
D’Agents [7], requires that the entire state of the agent, includ-

ing its execution stack and program counter, is saved before the
agent is migrated to its new location. This process of saving the
complete state of an executing process is calledcheckpointing. An
important quality of strong mobility is transparent migration of the
running process. That is, the agent is not aware of the migration
and bindings to other agents and objects are transparently resolved,
i.e., references to agents and objects are location independent. The
checkpoint/migration facility can be either implemented at the op-
erating system level [10, 14, 9] or can be incorporated within the
virtual machine of an interpreted language (e.g., within the Java
Virtual Machine [21]).

Despite the advantages of strong mobility, many agent systems
support weak mobility (like Ajanta [22] and Aglets). Most of the
agent systems are implemented on top of the Java Virtual Machine
(JVM), which provides with object serialization basic mechanisms
to implement weak mobility. The JVM does not provide mecha-
nisms to deal with the execution state.

Agent mobility is, in general, most easily realized in homoge-
neous environments. For strong mobility with checkpoint/migra-
tion incorporated at the operating system level, agent mobility is
limited to identical computer architectures running the same oper-
ating system. Agent mobility facilities implemented at the virtual
machine level makes the migration of agents machine independent,
but is still homogeneous in language, i.e., only migration of agents
from Java to Java platforms.

Migration of mobile agents does not need to be constrained by
homogeneity of code bases and platforms. Agents can be migrated
across heterogeneous code bases and platforms by reconfiguration
of the agents upon arrival at a new location. Blueprints of the func-
tionality of an agent are the basis of the migration. At a new loca-
tion, the agent is regenerated according to this blueprint using com-
ponents specific to the local agent platform. The functional com-
ponents can be from another code base than the originating agent,
but also the agent platform can differ; hence interoperability be-
tween agent platforms can be realized. The next section describes
the means with which this can be achieved: an agent factory.

3. AGENT FACTORY APPROACH
Assuming agents have a compositional structure described by

their blueprints, building an agent is, in fact, a configuration task:
a task that can be automated. Automated (re-)design of agents is
the task of an agent factory [3]. This section describes an existing
agent factory, one of the services of the AgentScape framework.
In the following discussion, it is assumed that agents are designed
to have a compositional structure and the resulting specification of
the agent is the blueprint. An agent factory generates (similar as
a compiler translates) from this blueprint an agent for a specific
platform.

Section 3.1 discusses characteristics of an agent factory, and Sec-
tion 3.2 illustrates this concept for a specific type of agent, namely
an information retrieval agent. Section 3.3 describes a current pro-
totype of this agent factory.

3.1 Characteristics of an agent factory
Whether the need for adaptation is identified by an agent itself,

or by another agent is irrelevant in the context of this paper. An
agent factory simply constructs new agents and/or modifies existing
agents [3]. The (re-)design of agents is fully automated, with very
limited interaction with outside parties. The concept of an agent
factory requires (i) agents to have a compositional structure, (ii) one
or more libraries of re-usable agent components, and (iii) one or
more ways to describe the functionality of these agent components.

In the agent factory discussed in this section two additional as-

sumptions hold: (i) two levels of description are distinguished:
conceptual and detailed, and (ii) no commitments are made to spe-
cific programming languages and/or ontologies.

A conceptual description of (parts of) an agent is an architectural
description: a blueprint of the components, interfaces and interac-
tions between components. A detailed description includes code,
together with definitions of e.g. interfaces. A mapping between
these descriptions defines the relationship between the elements at
one level with elements at the other. This mapping may be structure
preserving. (Note that this is not always ideal.) A number of de-
tailed components may exist for each conceptual component (e.g.
one in C, another in Java), and vice versa.

The concept of a building block is used to describe the compo-
nents within an agent factory at both levels. Some building blocks
contain open slots, others are fully specified and operational. Both
define their functionality on the basis of their interfaces. Open slots
define the interfaces of the building blocks to be inserted.

Depending on availability and domain of application libraries
of building blocks may include: partial agent designs (cf. generic
models/design patterns [5, 16, 18]), knowledge-based models (e.g.,
problem-solving models [20] or generic task models [2]), agent-
wrappers (providing cross platform interfaces) (e.g., AgentScape,
Zeus [12], message parsing Ajanta [22]), et cetera. Building blocks
may be written in, e.g., UML, Python, C++, CommonKads, etc.

3.2 Agents and building blocks
A blueprint of an agent contains descriptions of the interfaces of

building blocks and their open slots, and additional information on
the relation between the building block configurations at the two
levels of detail.

Consider, for example, the architecture of a simple information
retrieval agent. This simple agent is only capable of communica-
tion with one other agent, e.g. its owner, and interaction with ex-
ternal resources using one protocol. The template for this simple
information retrieval agent contains the agent architecture shown
in Fig. 1. A number of the components and data structures contain
open slots in this model specifying the interfaces of the required
building blocks. These are not depicted in this figure.

own
proc� ess
control

world
intera� ction

management

agent
spec� ific
tasks

Information
Retriev� a� l
Agent

agent
intera� ction

management

communicated
info

observation
results

agent info
to opc

own process� info to aim
own process� info to wim

info to be
communicated

observations
and actions

agent info
to ast

world info to ast

communication� info from ast
action and observation info from ast

Figure 1: Architecture of a simple information retrieval agent.

The component Own Process Control (opc) has an open slot for
a building block with knowledge of an agent’s identity and the
agent’s preferences for interactions with resources. The compo-
nent World Interaction Management (wim) has an open slot for a

BB
information

retrieval
agent

opc s� lot

wim slot

ast s� lot

BB/kb: agent identity d
�

etermination

BB/comp:
strategic
choice out
of 2 comp

BB/kb: simple htt
�
p info search

BB/kb: kb
�

 combo BB/kb: world interaction pr� eferences determination

strat
slot

comp-1
slot

comp-2
slot

BB/kb: world interaction co-ordination

BB/comp: http wor� ld interaction

BB/comp: ftp wor� ld interaction

BB/kb: kb
�

 combo

BB/kb: simple ftp� info search

Figure 2: Building block configuration of a simple information retrieval agent.

building block capable of managing interaction with external re-
sources. The component Agent Specific Task (ast) has an open
slot for a building block capable of transforming user requests into
queries, and query results into a format/language users may un-
derstand. The fourth component of the agent, Agent Interaction
Management (aim), does not have an open slot.

The control inside this building block is pre-defined, no control
slot is available for extension. A number of data-structures used by
the agent need to be extended, see Section 4. The library contains a
detailed building block for this information retrieval agent template
in Java. The structure of the code mirrors the architecture of the
agent.

Figure 2 illustrates a building block-configuration in which two
levels of building blocks were required: each open slot required a
building block that itself contained other open slots. Note that the
lower level building blocks make a distinction between open slots
for data, and open slots for processes.

3.3 Agent factory prototype
A prototype of the agent factory automatically (re-)designs an

information retrieval agent: its blueprint and executable code. The
blueprint, the composition of building blocks, of an existing sim-
ple information retrieval agent, is briefly described above in Sec-
tion 3.2.

Conceptual components are specified in theDESIRE frame-
work [1, 2]. The compositional nature ofDESIRE models, and the
separation between processes and knowledge makes it possible to
specify knowledge intensive systems from reusable components.
A structure-preserving mapping exists between the configuration
of building blocks at the conceptual level of abstraction and the
configuration of building blocks at the detailed level of abstraction.
The detailed components are in Java.1

The prototype agent factory itself is written in Java, and contains
enough knowledge to be able to (re-)design simple information re-
trieval agents.

4. MIGRATION USING THE AGENT FAC-
TORY SERVICE

One of the strengths of the agent factory concept is that it pro-
vides a means to support migration of agents in heterogeneous envi-
ronments that require a high level of security. Section 4.1 discusses
pre-conditions for successful migration of agents. Section 4.2 de-
scribes the approach in agent-factory-enhanced migration.

1Automated prototype generation within theDESIRE framework on the ba-
sis of detailed formal specifications facilitates verification and validation
of knowledge intensive systems; this feature is not used within the current
prototype of the agent factory.

4.1 Migration pre-conditions
To facilitate the description of migration of an agent, it is as-

sumed that an agent consists of executable code and state. Exe-
cutable code may contain “code and data” if these can be distin-
guished, or may be inseparable (as with Prolog). When an agent
migrates, it needs to retain sufficient information from its state to
resume execution at its destination. Note that this description leans
towards weak-mobility: it may not be necessary to transport the
entire state of an agent.

Although it is not necessary for the source and destination host
to both have access to an agent factory, it greatly simplifies descrip-
tions of the migration process. An agent needs to be able to store
and restore information on its state; this is a requirement for inter-
operability. Possibly an implementation-independent format such
as XML, RDF or OIL may be used.

The agent factories on the hosts need to share some building
blocks. E.g., each agent factory may have the same libraries of
building blocks at the conceptual level of abstraction, but may have
different libraries of building blocks at the detailed level. For ex-
ample, an agent factory may have a mapping from a conceptual
agent architecture building block to a detailed building block writ-
ten in Java; while another agent factory may have a detailed build-
ing block written in C++.

4.2 Approach to migration
In essence, migration entails moving an agent from one machine

to another. This usually involves pre-packaging an agent before its
move, such that it its executable code and state may be restored
at the destination host. Migration using an agent factory diverges
from standard mobility of agents in that executable code with state
is notmigrated, but the agent’s blueprint together with (parts of) the
agent’s state.This might seem to be similar to Java agents and their
interaction with class loader objects that allows to load specific im-
plementations of Java classes; however, we migrate a specification
of an agent that can be targeted to an arbitrary platform like Java,
Python, or Prolog.

Consider the following scenario for heterogeneous mobility, de-
picted in Fig. 3. An information retrieval agent A currently resides
on a host machine H1. This host runs the Ajanta [22] agent plat-
form, and, as such, supports Java agents. The agent wishes to move
to another host: host H2. The host H2 runs theDESIRE platform,
and its agents run code generated by theDESIREplatform.

In the process of migrating the agent A from host H1 to host H2,
the agent first needs to offload information on its state. Then the
agent factory on host H1 sends the blueprint of the agent, together
with the state information of the agent to host H2.

Host H2’s local agent factory receives the blueprint of the agent
and state information. This agent factory designs aDESIRE agent
A on the basis of the blueprint of agent A. ThisDESIRE agent A

Host1 Host2

agent A agent A

�

Aja� nta DES
�

IRE

netw� ork

Java Des� ire

Figure 3: Example migration scenario in which agent A on host
1 (written in Java, running on Ajanta) migrates to host 2 (where
it will be specified in DESIRE and running on DESIRE).

(i.e., a functionally equivalent incarnation of the Java agent A) runs
on DESIRE’s virtual machine (theDESIRE-interpreter), and is able
to incorporate information on its state.

The agent factory on the receiving side regenerates the agent,
possible in a different implementation language and in a different
environment. The agent may need to acquire information about its
new environment and react to changes.

5. ISSUES
Heterogeneous migration of agents, possibly across agent plat-

forms, raises a number of issues with respect to interoperability
(Section 5.1) and security (Section 5.2).

5.1 Heterogeneity & interoperability
Migration using an agent factory makes it possible to migrate

agents not only in a homogeneous environment, but also in hetero-
geneous environments. The executable code of an agent usually
contains a part that provides the interfaces between the agent and
the agent platform on which the agent “lives.” Taking this inter-
face into account, the following migration scenarios can be distin-
guished.

Homogeneous migrationAn agent migrates to another host with-
out any changes to the format of its executable code or the
interfaces to the agent platform. This form of migration re-
quires that source and destination platform offer the same
interfaces, but also that the (virtual) machine that executes
the agent is the same at both sides. In practice, this form of
migration is most common.

Cross-platform migration An agent is migrated to another host
with a different agent platform, but that offers the same (vir-
tual) machine architecture. This generally entails changes
to the interface to the agent platform, but not necessarily
changes to the format of its executable code. This form of
migration may occur when, e.g., a Java-agent migrates from
a Ajanta platform to a Zeus platform. One commonly ap-
plied solution is to offer wrapper interfaces that hide the dif-
ferences between source and target platform. Another ap-
proach, followed in MAF [13] or FIPA, is to enforce plat-
forms to implement a standard interface for interoperability.

Agent-regeneration migration An agent migrates to a host run-
ning a different (virtual) machine requiring that the agent
is regenerated, resulting in different executable code. Note
that the target agent platform may be the same as that of the
source, which may simplify regeneration. To regenerate an
agent, it is necessary that the target has a blueprint of the
agent. We are not aware of agent systems that support this
approach.

Heterogeneous migrationAn agent migrates to another host with
a different agent platform and offering a different (virtual)
machine. In this case, regeneration of the agent is necessary.
Because the underlying agent platform is also different the
agent’s blueprint must be platform independent, which may
complicate matters.

This paper advocates heterogeneous migration as it offers most
flexibility. As distributed systems are gradually required to scale
worldwide across different administrative organizations, and to sup-
port a myriad of platforms, solutions are needed that anticipate het-
erogeneity and adaptability. Regeneration of agents for different
underlying platforms is a step towards meeting such requirements.

The approach described in this paper combines heterogeneous
migration with weak migration. The term proposed for our ap-
proach isgenerative migration. Generative migration for agents
may open the world of distributed systems to agent-developers. The
adage “write once, run everywhere” is achieved while retaining het-
erogeneity and tackling the problem of interoperability.

Generative migration requires that a target host has access to an
agent factory capable of generating an agent for that target. Ideally,
this factory is placed on the target host, or otherwise available on
the same local-area network. An important issue is that the factory
is trusted to generate an agent that the target can trust. Security and
trust are briefly discussed below.

Our approach has the additional benefit that various optimiza-
tions become possible. For example, the agent generated by a fac-
tory may be optimized with respect to the target’s machine archi-
tecture, or the way that local resources such as databases are ac-
cessed. In addition, it is to be expected that transmission of an
agent’s blueprint and information on its current state will generally
require less network resources than migrating an agent using more
traditional approaches. On the downside, the agent-generation pro-
cess may affect overall performance in the case of often-migrating
agents.

5.2 Security
Migration of an agent involves security from a number of per-

spectives. Security issues related to authenticating an agent, and
deciding whether an agent is allowed to migrate to its destination,
are not discussed in this paper. What remains are how to protect an
agent against attacks during and after its migration, and how to pro-
tect a target against attacks from a malicious agent. Considerable
research has already been conducted with respect to both issues and
which can be applied to our approach. In the following, we briefly
consider the role of security. It should be noted, however, that se-
curity in our approach is subject to further research.

5.2.1 Protecting an agent
A mobile agent may be preyed upon while it is in transit, or

while running on a malicious host. It is impossible to protect an
agent against modifications during its transfer or execution in an
untrusted environment [4]. At best, it can checked whether an agent
has been maliciously modified and take appropriate measures after
the fact. Our approach to migration can help here.

It is important to realize that, in principle, an agent’s blueprint
does not change during its lifetime. Consequently, by adding an
integrity check to a blueprint using standard techniques for dig-
ital signatures [19], it is easy to detect whether a blueprint has
been changed. When a factory notices that a blueprint has been
changed, it can either discard the agent or generate it from the orig-
inal blueprint. The latter is possible only if that blueprint is locally
available, or if it can be retrieved in a secure way. Securely retriev-
ing a blueprint requires that a factory can set up a secure channel to

a blueprint repository, that is, a channel that provides authentication
and transmission integrity.

Of course, it should be possible to supportevolutionary agents
by which new blueprints are generated. However, blueprint genera-
tion should be done only by trusted factories and never as a solution
to migration. As such, it falls outside the scope of this paper.

5.2.2 Protecting a host
A host that admits foreign mobile agents to its resources takes

a risk: some of the agents may be malicious, and may try to sub-
vert (parts of) the host. The problem with traditional approaches to
agent migration is that it is impossible to check in advance whether
or not imported code does only what it promises. The solution is
to construct what are known as sandboxes [23]: a restricted en-
vironment in which, effectively, each instruction is monitored and
checked before being executed. If access to resources is violated,
execution halts. The sandbox model is quite restrictive, and has
been extended since its initial introduction (see, for example, [6,
11]).

Regenerating agents from blueprints may considerably help in
protecting a host against malicious code. Normally, blueprints do
not contain code descriptions, but refer only to interfaces and com-
ponents that should be locally available to an agent factory. The
code contained in these components may have been verified by the
owner of the factory, or have been obtained from trusted sources.
Of course, protection will fail if verification has not been done
properly. In effect, a requirement is that trusted code is available
before an agent migrates to a target, or that can be retrieved from a
trusted repository through a secure channel.

In those cases that blueprints require execution of untrusted code,
traditional approaches based on sandboxing techniques or protec-
tion domains need to be implemented as part of the target platform.

A mobile agent arriving at the host is regenerated on the basis
of its blueprint, using only detailed building blocks which the host
approves of. Although the specific configuration of building blocks
may be new to the host, a number of security risks can be removed.
The mobile agent may still be untrustworthy, but is prevented from
executing certain calls on the host.

As an example, consider a bank which wishes to use mobile
agents which may transact money from one account to another.
The bank offers libraries of building blocks written in Java to its
clients. These clients may build mobile agents that can perform
transactions at the bank. The bank admits only those mobile agents
that can be regenerated on the basis of their blueprint using build-
ing blocks written in Cobol. This may give more confidence to the
bank that the mobile agents will not be able to tamper with their
system. Note that cheating, using other people’s passwords and
certificates is not necessarily stopped by this approach.

6. DISCUSSION AND FUTURE WORK
Agents, and in particular mobile agents, offer a means for ap-

plication developers to build distributed applications. Mobility of
agents is often required for various reasons, notably performance.
Current agent platforms offer a wide range of services to agent de-
velopers, including mobility. However, mobility of agents is usu-
ally limited to hosts running the same agent platform and that have
the same (virtual) machine architecture. In other words, it is often
restrained to a homogeneous environment.

The approach described in this paper transcends this homogene-
ity and proposesgenerative mobility. In generative mobility, a
blueprint of an agent’s functionality is transported, together with
information on the agent’s state. At its destination, an agent fac-
tory regenerates the executable code of the agent on the basis of its

blueprint. An agent may then restore its state and resume execu-
tion.

With generative mobility an agent may travel to locations that
offer a different platform and that require it to adopt a different
(virtual) machine architecture. In other words, generative mobility
supports true heterogeneous mobility, offering an agent maximum
flexibility with respect to where it wants to go. In addition, an
agent’s executable code can be optimized for its destination, while
retaining its required agent-level functionality. In their own way,
agent factories and blueprints offer a language and agent platform
independent virtual machine that allows for heterogeneous migra-
tion.

Agent factories play an important role in generative mobility as
they offer the services needed to generate executable code on the
basis of blueprints. Agent factories rely on libraries of building
blocks from which agents can be configured. As a consequence,
agent factories need to share these (conceptual) building blocks to
understand an agent’s blueprint and be able to generate its asso-
ciated executable code. Homogeneity in agent architectures is a
likely consequence of this approach.

Research on generative mobility is clearly not finished. In par-
ticular, we need to investigate to what extent the use of blueprints
is flexible enough to describe agents, and how security can be ad-
equately dealt with. Agent factories form an important component
within our worldwide distributed AgentScape system that allows
agents to be automatically (re-)designed. Currently a prototype of
the agent factory (namely the libraries of components) is being built
that supports generative mobility.

The use of generative mobility for relatively closed environ-
ments, such as hospitals, is currently being studied. Generative
mobility with trusted code libraries on the hospital side may pos-
sibly provide a solution to controlled access to medical dossiers.
Insurance companies, for example, are allowed limited access to
specific types of information and processing. Control over the exe-
cutable code of an insurance company’s agent provides a means for
a hospital to control the calls and data an agent may execute inside
the hospital.

Acknowledgments
This research is supported by NLnet Foundation,

http://www.nlnet.nl. The authors wish to acknowledge the
contributions made by Hidde Boonstra, David Mobach, Oscar
Scholten and Sander van Splunter.

7. REFERENCES
[1] F.M.T. Brazier, B.M. Dunin-Keplicz, N.R. Jennings, and

J. Treur. Formal specification of multi-agent systems: A
real-world case.International Journal of Co-operative
Information Systems, 6:67–94, 1997. Special Issue on
Formal Methods in Co-operative Information Systems:
Multi-Agent Systems.

[2] F.M.T. Brazier, C.M. Jonker, and J. Treur. Principles of
compositional multi-agent system development. In
Proceedings of the 15th IFIP World Computer Congress,
WCC’98, Conference on Information Technology and
Knowledge Systems, IT and KNOWS’98, pages 347–360,
Vienna, Austria, August 1998.

[3] F.M.T. Brazier and N.J.E. Wijngaards. Automated servicing
of agents. InProceedings of the AISB-01 Symposium on
Adaptive Agents and Multi-Agent Systems, pages 54–64,
March 2001.

[4] W.M. Farmer, J.D. Guttman, and V. Swarup. Security for
mobile agents: Issues and requirements. InProceedings of

the 19th National Information Systems Security Conference,
pages 591–597, Baltimore, MD, October 1996.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1994.

[6] L. Gong and R. Schemers. Implementing protection domains
in the Java Development Kit 1.2. InProceedings of the
Symposium on Network and Distributed System Security,
pages 125–134, San Diego, CA, March 1998. Internet
Society.

[7] R.S. Gray, G. Cybenko, D. Kotz, R.A. Peterson, and D. Rus.
D’Agents: Applications and performance of a mobile-agent
system.Software: Practice and Experience, 2001. In press.

[8] V.N. Gudivada, V.V. Raghavan, W.I. Grosky, and
R. Kasanagottu. Information retrieval on the World Wide
Web.IEEE Internet Computing, 1(5):58–68,
September/October 1997.

[9] K.A. Iskra, F. van der Linden, Z.W. Hendrikse,
B.J. Overeinder, G.D. van Albada, and P.M.A. Sloot. The
implementation of Dynamite: An environment for migrating
PVM tasks.Operating Systems Review, 34(3):40–55, July
2000.

[10] D. Johansen, R. van Renesse, and F.B. Schneider. Operating
system support for mobile agents. InProceedings of the Fifth
Workshop on Hot Topics in Operating Systems (HotOS-V),
pages 42–45, Orcas Island, WA, May 1995.

[11] D. Malkhi and M. Reiter. Secure execution of Java applets
using a remote playground.IEEE Transactions on Software
Engineering, 26(12):1197–1209, December 2000.

[12] H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A
tool-kit for building distributed multi-agent systems.Applied
Artifical Intelligence Journal, 13(1):129–186, 1999.

[13] OMG. Mobile agent facility specification. OMG Document
formal/00-01-02, Object Management Group, Framingham,
MA, January 2000.

[14] B.J. Overeinder, P.M.A. Sloot, R.N. Heederik, and
L.O. Hertzberger. A dynamic load balancing system for
parallel cluster computing.Future Generation Computer
Systems, 12(1):101–115, May 1996.

[15] H. Peine and T. Stolpmann. The architecture of the Ara
platform for mobile agents. InProceedings of the First
International Workshop on Mobile Agents (MA’97), volume
1219 ofLecture Notes in Computer Science, pages 50–61,
Berlin, Germany, April 1997. Springer-Verlag.

[16] F. Pẽna-Mora and S. Vadhavkar. Design rationale and design
patterns in reusable software design. InArtificial Intelligence
in Design (AID’96), pages 251–268, Dordrecht, 1996.
Kluwer Academic Publishers.

[17] G. P. Picco. Mobile agents: An introduction.
Microprocessors and Microsystems, 25(2):65–74, April
2001.

[18] A.J. Riel.Object-Oriented Design Heuristics.
Addison-Wesley, Reading, MA, 1996.

[19] B. Schneier.Applied Cryptography. John Wiley, New York,
NY, 2nd edition, 1996.

[20] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog,
N. Shadbolt, W. Van de Velde, and B. Wielinga.Knowledge
Engineering and Management, the CommonKADS
Methodology. MIT Press, 1999.

[21] N. Suri, J. Bradshaw, M.R. Breedy, P.T. Groth, G.A. Hill, and
R. Jeffers. Strong mobility and fine-grained resource control

in NOMADS. In Proceedings of the Joint Symposium on
Agent Systems and Applications/Mobile Agents (ASA/MA
2000), pages 2–15, Zurich, Switzerland, September 2000.

[22] A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh.
Mobile agent programming in Ajanta. InProceedings of the
19th International Conference on Distributed Computing
Systems (ICDCS’99), pages 190–197, Austin, TX, May
1999.

[23] D.S. Wallach, D. Balfanz, D. Dean, and E.W. Felten.
Extensible security architectures for Java. InProceedings of
the 16th Symposium on Operating System Principles, pages
116–128, St. Malo, France, October 1997. ACM.

