Automated servicing of agents

Frances M. T. Brazier; Niek J.E. Wijngaards
Intelligent Interactive Distributed Systems Group,
Faculty of Sciences, Vrije Universiteit Amsterdam;
de Boelelaan 1081a; 1081 HV Amsterdam, The Netherlands
frances@cs.vu.nl; niek@cs.vu.nl

Abstract

Agents need to be able to adapt to changes in their environment. One way to achieve this, is to service agents when
needed. A separate servicing facility, a multi-agent factory, is capable of automatically modifying agents. This paper

discusses the feasibility of automated servicing.

1 Introduction

Agents typically operate in dynamic environments.
Agents come and go, objects appear and disappear, and
cultures and conventions change. Whenever an envi-
ronment of an agent changes to the extent that an agent
is unable to cope with (parts of) the environment, an
agent needs to adapt. Changes in the social environment
of an agent, for example, may require modifications to
existing agents. A new agent communication language,
or new protocols for auctions, are examples of such
changes. An agent may be able to detect gaps in its
abilities; it may not be able to fill these gaps with its own
built-in learning mechanisms. Whether the need for
servicing is detected by an agent itself, or by another
agent (automated or human) is irrelevant to the concept
involved: external assistance may be needed to perform
the necessary modifications.

This paper discusses the feasibility of a service for auto-
mated revision. In Section 2, needs for adaptation are
discussed. An automated servicing facility, a multi-agent
factory, is described in Section 3. An example of adapt-
ing an agent, based on an existing prototype automated
servicing service, is provided in Section 4. The feasibil-
ity of such a service for automated revision is discussed
in Section 5, in which the multi-agent factory is also

compared to related approaches. The results presented in
this paper are discussed in Section 6.

2 Adaptive Agents

Both static and mobile agents may encounter the need
for adaptation. In this section an example is used to il-
lustrate a few situations in which external adaptation is
feasible.

The focus in this example is on an information gathering
agent. The information gathering agent is assumed to be
mobile. Its task is to find information for a researcher
about travel arrangements needed to attend a conference.
To this purpose the agent communicates with three other
agents (a personal assistant agent, a travel agent, a bank
agent) and interacts with the world-wide web.

Example 1. The persona assistant agent informs the
information gathering agent about its preferences with
respect to travel agents, and about the researcher’s travel
preferences. The personal assistant has acquired some of
this information directly from the researcher, and has
acquired some over the course of time from the re-
searcher and from its own experience. The information
gathering agent maintains a profile of the personal as-
sistant agent, and adapts this profile on the basis of in-
teraction with the personal assistant agent (e.g., as also
encountered in negotiation settings (Bui, Kieronska, and

" Editors: Daniel Kudenko & Eduardo Alonso. Proceedings of the AISB-01 Symposium on Adaptive Agents and Multi-
agent systems, at the Agents & Cognition AISB-01 conference. Published by the society for the study of artificial intelli-
gence and the simulation of behaviour. ISBN 1.902956.17.0, pages 54 - 64. March 2001.



Venkatesh, 1996)). Note that in this example personifi-
cation is not aimed at personalising an agent's repre-
sentation of a human user (e.g., see Wells and Wolfers,
2000; Soltysiak and Crabtree, 1998), but the profile of
the personal assistant.

Example 2. The information gathering agent consults
the World-Wide-Web to find dates and a location for the
aforementioned conference. The conference page is an-
notated in an ontology that is unfamiliar to the agent.
For example, instead of an ontology expressed in XML
(Bray, Paoli, Sperberg-McQueen, and Maler, 2000), an
ontology is expressed in OIL (Fensel, Horrocks, van
Harmelen, Decker, Erdman, and Klein, 2000). One way
to approach this problem is to have the information
gathering agent acquire understanding of this ontology.
Another option is to use an intermediary agent (e.g.,
brokers/matchmakers (Wong and Sycara, 2000) to find
an agent capable of translating between ontologies, e.g.
via SOAP, (the Simple Object Access Protocol by Box,
Ehnebuske, Kakivaya, Layman, Mendelsohn, Frystyk
Nielsen, Thatte, and Winer, 2000). In this last case the
agent needs to “travel” and collaborate with its new as-
sistant during interaction with the conference site.

The information gathering agent also wishes to discuss
possible travel arrangements with the travel agent. The
travel agent indicates that it uses a specific language and
protocol to discuss travel arrangements. The information
gathering agent needs to acquire this agent language and
protocol. This is comparable to the acquisition of a new
ontology sketched above.

Example 3. During the discussion between the informa-
tion gathering agent and the travel agent, the issue of
credit rating arises. The information gathering agent
needs to prove to the travel agent that it is trustworthy
and has an acceptable credit rating. In addition to secu-
rity clearance on its own trustworthiness, the informa-
tion gathering agent needs additional information from
the personal assistant agent. The information gathering
agent needs permission to ask a bank for this informa-
tion and the name and address of a specific bank agent.
The bank agent, in turn, requires certificates and a guar-
antee from the information gathering agent that specific
security measures are in place, before it will provide any
other information. If the information gathering agent
does not have this functionality it may be possible to add
this functionality to the agent. (Please note that adding
functionality may not be the only measure that needs to
be taken in this case.)

In each of the situations sketched above, the agent may
be adapted by an automated servicing process. The types
of adaptation involved are:

? Personalisation: an agent can be provided with pro-
files specific to its current co-operation partners.

? Domain and languages: an agent can be adapted to
include knowledge about a specific domain to under-
stand a specific agent communication language and
protocol.

? Functionality: new functionality or characteristics
can be added to (or deleted from) an agent.

3 A multi-agent factory

An automated agent servicing facility, a multi-agent
factory, is described in this section. The multi-agent
factory, in essence, re-designs descriptions of agents.
Previous research (Brazier, Jonker and Treur, 2000;
Brazier, Jonker, Treur and Wijngaards, 2000) focussed
on automated redesign of multi-agent systems at a de-
tailed (conceptual) level. The automated servicing serv-
ice described in this paper is an extension of thiswork in
two aspects.

The first distinction with the previous work is that the
multi-agent factory as presented in this paper is not pri-
marily focussed on re-designing agents on the basis of
first principles on a conceptual level, as described in
(Brazier, Jonker, Treur and Wijngaards, 2000). The
multi-agent factory uses building blocks to construct,
and adapt, agents given specific templates. Templates
are skeletons that describe the architecture of a (larger)
part of an agent. Components are the building blocks.
Templates and components are combined according to
pre-defined rules.

The second distinction with previous work is a broad-
ening of the scope of the re-design process. The multi-
agent factory modifies not only the conceptual descrip-
tion of an agent, but also its operational code. This ne-
cessitates knowledge about the relationship between the
conceptual description and operational description in a
template or component.

On the basis of needs for adaptation, the automated
servicing process re-configures templates and compo-
nents at both levels. Re-configuration (an instance of a
re-design process) of an agent first takes place at the
conceptual level: templates and components are removed
and added until a satisfactory conceptual agent descrip-



tion is acquired. On the basis of the configuration of
templates and components in the conceptual description
of an agent an operational description of an agent is
generated.

To facilitate the automated re-design of agents, a number
of assumptions have been made on the descriptions of an
agent (Section 3.1). In addition, the multi-agent factory
has a library of agent building blocks, the so-called tem-
plates and components (Section 3.2). The configuration
task of the multi-agent factory (Section 3.5) is based on
knowledge of the characteristics and properties (Section
3.3), and the availability of templates and components
(Section 3.4).

3.1 Assumptionson the design of agents

The feasibility of an automated service for revision of
agents depends largely on the assumptions imposed on
the design of the agents. The most important underlying
assumptions for an agent adaptation service used in this
paper are as follows.

The first assumption is that agents have a compositional
structure. A compositional structure greatly facilitates
the possibilities of adding, removing and changing parts
of an agent. This principle is used throughout software
design, ranging from describing processes (e.g., JSD
(Jackson, 1975)), via object-oriented programming (e.g.,
Booch 1991; Wieringa, 1996; Pressman, 1997) to com-
ponent-based programming (e.g., Hopkins, 2000).

The second assumption is that re-usable parts of agents
can be identified: templates (i.e., skeletons) and compo-
nents (i.e., building blocks). The multi-agent factory can
build an agent by correctly configuring templates and
components. This assumption relates to design patterns
(e.g., Gamma, Helm, Johnson and Vlissides, 1994;
Pefia-Mora and Vadhavkar, 1996; Riel, 1996) and li-
braries of software with specific functionality (e.g.,
problem-solving models (Schreiber, Akkermans, An-
jewierden, de Hoog, Shadbolt, van de Velde, and Wiel-
inga, 1999) or generic task models (Brazier, Jonker,
Treur, 1996)).

The third assumption is that templates and components
contain descriptions at two levels of abstraction: a con-
ceptual description and an operational description. This
assumption circumvents two problems. On the one hand,
it is difficult to determine a conceptual description on
the basis of an operational description of (part of) a sys-
tem (e.g., Jackson, 1995). On the other hand, it is again

difficult to determine the operational description of (part
of) a system on the basis of a conceptual description
(e.0., Rumbaugh, Jacobson, and Booch, 1999).

The fourth assumption is that properties and knowledge
of properties are available to describe templates and
components. Templates and components need to be de-
scribed to facilitate their retrieval (e.g., as is done in
work on describing classes of diagnostic (non-user-
interactive) problem-solving methods by Benjamins
(1995).)

A fifth assumption is that no commitments have been
made to specific languages and/or ontologies. The lan-
guages used for the descriptions of templates and com-
ponents on both their levels of abstraction are left open,
as are the descriptions, and contents, of the properties
and knowledge on properties to describe templates and
components. The multi-agent factory is explicitly devel-
oped to be an open-architecture.

3.2 Templates and components

Templates and components are the building blocks with
which agents are constructed. Templates are skeletons
which describe an architecture of a (larger) part of an
agent. A template may usually be combined with a num-
ber of (other) templates and/or components. A compo-
nent is a building block.

For each conceptual description, a number of operational
descriptions may be devised. These operational descrip-
tions may differ in the operational language (e.g., C,
C++, Java), but also in, for example, the efficiency of the
operational code. A template or component contains only
one combination of a conceptual description and associ-
ated operational description.

Templates and components are configurable. However,
templates or components cannot be combined indis-
criminately. The open sot concept is used to regulate the
ways in which templates and components may be com-
bined. An open slot in a template or component has as-
sociated properties at both levels of abstraction that pre-
scribe the properties of the entity to be 'inserted'.



information gathering

agent

|
co-operative 11 1T 1 1
agent g E E E ® = 09
template & 8 £ © E g ©
“slots” { A A/f\‘ ‘ A A

XML
HTML

XML and
HTML
components

Figure 1. Graphical representation of templates and
components and their slots.

This has been depicted in Figure 1, in which templates
and components have slots (this specific agent is de-
scribed in more detail in Section 4). Most often, tem-
plates and components are inserted in open slots of other
templates, and components. Components are often in-
serted in open slots of other components. An open slot
has to have counterparts in both the conceptual descrip-
tion and the associated operational description.

Templates specify the architecture of the agent. In figure
1, the information gathering agent is shown to consist of
seven processes (as explained in Section 4). Each of
these processes has a slot, which is filled by a combina-
tion of templates and/or components. The open slot for
the world interaction management process (wim), is
shown to be filled with two components, which provide
specific functionality to interact with web pages anno-
tated in HTML and XML.

The existence of open slots implies that a structure-
preserving relationship between conceptual and opera-
tional descriptions with respect to slots is heeded. To be
more precise, at the very least an "open-slot preserving"
relationship is needed, so that each open slot in a con-
ceptual description is also in the associated operational
description. In addition, the operational description has
to fulfil the functional and behavioural properties stated
in the conceptual description, and may have its own as-
sociated properties.

The open-slot preserving relationship between the con-
ceptual and operational descriptions implies that tem-
plates and components are combined in the same con-
figuration at both levels of abstraction. The two-stage
revision process facilitates the generation of operational
code: on the basis of the configuration of templates and

components at a conceptual level, the operational code is
generated in a relatively straightforward manner, as is
explained in the next section.

3.3 Details of templates and components

The building blocks used by the multi-agent factory,
templates and components, have the same structure, as
depicted in Figure 2. This structure does not make a
commitment to specific conceptual or operational de-
scription languages, but includes types of information
that are also included in structures designed to describe
design patterns (e.g., Gamma, Helm, Johnson, and Vlis-
sides, 1994).

- characteristics

- conceptual pre-conditions

~ operational pre-conditions

— conceptual level properties

- template or component properties

— open slot properties

T
o

perational level properties

- template or component properties

— open slot properties

- conceptual level description

- operational level description

Figure 2. Structure of templates and components used by
the multi-agent factory.

The characteristics of a building block describe its name,
creation dates, authors, version information. This infor-
mation is not related to the conceptual or operational
descriptions inside the building block.

The pre-conditions contain assumptions and require-
ments that have to be satisfied by the environment (i.e.,
the open slot and the template containing that open slot)
in which the building block is to be placed. For example,
a building block which contains a specific sorting algo-
rithm, may require as its input an unordered list of ele-
ments, where each element consists of an unknown part
and an explicit key. In addition, the pre-conditions de-
scribe which languages are used in the conceptual level
and operational level descriptions.



The properties of templates and components at the con-
ceptual level are divided into properties concerning the
templates and components, and properties concerning
open slots. Examples of conceptual level properties of a
skeleton for an agent are: it is autonomous, it is capable
of communicating with other agents, it is capable of in-
teracting in the world, it is capable of retaining informa-
tion on other agents and the world. Conceptual level
properties of open slots are, for example, that a specific
open slot contains an agent communication language
syntax expressed in xML. Template properties at the op-
erational level include properties such as. an agent is a
process, the size is so many bytes, the datastructure is of
a specific class. Properties of open slots are, for example,
that the first argument in a specific open slot contains
the input-information for a specific process, the second
argument contains a pointer to a data structure of a spe-
cific class for the results.

The conceptual level description and the operational
description of a building block are not specified in more
detailed, as no commitments to languages are made. One
restriction, however, is that each open slot needs to ap-
pear in both descriptions.

3.4 Retrieving building blocks

The multi-agent factory is able to retrieve templates and
components on the basis of needs for adaptation. The re-
design process inside the multi-agent factory analyses
needs for adaptation and transforms these into reguire-
ments (on structure, functionality, and behaviour) on
agents to be constructed. The agent design is a configu-
ration of templates and components that satisfies these
reguirements.

Matching reguirements on structure, functionality, and
behaviour of (parts of) agents against properties of tem-
plates and components is not trivial. Requirements can
be incomplete, conflicting, or vague. To solve this prob-
lem, a matching process is needed which has some un-
derstanding of the properties involved.

Properties are related to each other in property networks.
This allows generic properties to be, for example, refined
into a number of sets of more refined properties. Two
assumptions are made; if a more generic property of an
agent holds, then at least one set of refined properties
holds. If all refined properties of one set hold, then the
more generic property also holds.

A number of refinements may exist for a specific prop-
erty, each of which can be included in a refinement ‘tree.
Refinement trees can be combined into property net-
works. In these networks, it is possible to explore alter-
native refinements of a property. For example, the prop-
erty that a specific algorithm is a sorting algorithm can
be refined into more specific properties on efficiency,
e.g. sorting algorithms in linear time, in O(nlog(n))
time, etc. Alternatively, the same property may be re-
fined into more specific properties on the number of keys
used: one key, one primary key and one secundairy key,
etc. Yet another aternative is that this property is, in
itself, a refined property of a property that an algorithm
is a classification algorithm.

The matching process has variable forms of interpreta-
tion. One form is that no interpretation is used at all
(syntactical matching), so that a required property needs
to be explicitly present in a building block. An alterna-
tive is to use property refinement: a high level property
(e.g., an algorithm which orders a list of elements) for
which no building block can be found, can be refined
into a more specific property (e.g., an algorithm which
orders an array of elements in O(n? time.), for which a
building block can be found. Usually, a building block
will exist with a more specific property, which can then
fulfil the desired property.

A more elaborate means of query interpretation is by
traversing semantic property networks. This usually re-
turns a 'good guess, but not necessarily an optimal an-
swer as a building block with similar properties is re-
turned. The notion of 'similar* can be tuned (e.g., what
distance to travel through property networks).

3.5 Theprocessof adaptation

The multi-agent factory is able to adapt an existing agent
on the basis of needs for adaptation. The multi-agent
factory re-designs agents. The multi-agent factory first
obtains an initial set of required properties (the needs for
adaptation) and a description of the agent to be adapted.

The initial set of required properties is analysed and ma-
nipulated (e.g., interpreted, conflicts are resolved, etc.)
to form a set of refined required properties that are still
related to the initial set, yet are more specific. This may
already involved checking the library of templates and
components for the presence of templates and compo-
nents with specific properties (it makes no sense to re-
quire, for example, a sorting algorithm in O(1/n) time if
there are no such building blocks in the library).



On the basis of such a more specific set of required
properties, the conceptual description of the agent is
adapted. Building blocks are inserted, moved, and/or
deleted, until the required properties are satisfied if pos-
sible. Additional adaptation of the set of required prop-
erties may be necessary (if, for example, the require-
ments prove to be conflicting). A new set of required
properties may be constructed, based on the previous set
of required properties and evaluations of the success or
failure in constructing a satisfactory conceptual descrip-
tion.

At some point in this cycle, it is decided whether a sat-
isfactory conceptual description of an agent has been
constructed, which satisfies a specific set of required
properties (based on the initial set of required proper-
ties). If this point is reached, the multi-agent factory
focuses on adapting the operational description of the

agent.

The operational description of an agent is based on the
configuration of templates and components in the con-
ceptual description of the agent. If problems occur in
combining operational descriptions from templates and
components, either other templates and components are
used (with the same conceptual description & properties,
but different operational description and properties) or a
different conceptual description of the agent is needed.
The process described above is then repeated with addi-
tional requirements.

4  Automated servicing of an infor-
mation gathering agent

In this paper an example is given of an agent that re-
quires servicing. The adaptation of an information gath-
ering agent in this example is based on an existing pro-
totype automated servicing service. The conceptual de-
scriptions of the templates and components are specified
in the DESIRE knowledge-level modelling language (Bra-
zier, Jonker, and Treur, 1998) and the operational de-
scriptions are in Java.

( information gathering agent

own process cooperation
control management
4 )

. N\

agent maintenance
[ interaction ][ of agent ]
(_management | (_information J

N\ . N\
world maintenance
[ interaction ] [ of world ]

\managementj \_ mformatlon)

I agent I
specific task
. J

Figure 3. The seven processes inside the information
gathering agent. Each process, including the agent itself,
has an interface. Between processes, information transfer

is defined (not shown).

The information gathering agent used in this example is
based on a template containing a generic co-operative
agent model (Brazier, Jonker, and Treur, 1996). Figure 3
illustrates the seven processes distinguished in this ge-
neric model. This architecture models an agent that:

? reasons about its own processes (component Own
Process Control, or opc),

? communicates with other agents (component Agent
Interaction Management, or aim),

? maintains information about other agents (compo-
nent Maintenance of Agent Information, or mai),

? interacts with the external world (component World
Interaction Management, or wim),

? maintains information about the external world
(component Maintenance of World Information, or
mwi),

? participates in project co-ordination (component Co-
operation Management, or cm) and

? the agent's specific tasks (component Agent Specific
Tasks, or ast).

This model for a co-operative agent includes components
for management of its own processes, interaction with
other agents including co-operation, interaction with the
external (material) world, and an agent's more specific
tasks. In this model, a co-operative agent receives mes-
sages from other agents, and observations in the external
world (its input). It sends messages to other agents and
directs its own observations and actions in the external
world (its output).



In this section two examples are given of adaptation of
the information gathering agent. In the first example,
the information gathering agent is adapted to include
functionality for understanding a new language (Section
4.1). In the second example, the information gathering
agent is adapted to include new functionality for (more)
secure communications and co-operations (Section 4.2).

4.1 Shallow adaptation

Figure 4 depicts the information gathering agent and
shows that both the agent interaction management proc-
ess (aim) and the co-operation management process
(cm) are open slots. The open slot of the agent interac-
tion management process is filled by two components
providing functionality for understanding a communica-
tion language with the personal assistant and an infor-
mation provider (e.g., which provides access to the
world-wide-web). The open slot of the co-operation
management process is filled by two components pro-
viding functionality for understanding how to co-operate
(protocols) with the personal assistant and an informa-
tion provider.

information gathering
agent

L B
85§68 F 8
Andnaaa

personal assistant prot. s> cm ——

personal assistannt comm. —>>— am

Figure 4. Partial description of the information gathering
agent. The open slots for the agent interaction manage-
ment and co-operation management processes are filled

with two components each: agent communication lan-
guages and protocols.

One of the needs for adaptation identified in Section 2
was that the information gathering agent needed to in-
teract with the travel agent. The travel agent was able to

indicate that a specific language and protocol was to be
employed. One way for the information gathering agent
to approach this problem is to use the multi-agent fac-
tory to have itself changed, such that it can understand
the languages and protocols needed for interaction with
the travel agent.

In the first case, the multi-agent factory searches its li-
braries of templates and components and is able to find
two components that support the functionality required.
In addition, these two components contain descriptions
on two levels of abstractions, and each description needs
to be linked to the, aready existing, description of the
information gathering agent. This results in a descrip-
tion of the information gathering agent, as depicted in
Figure 5.

information gathering
agent

p>— wim —
-

p>— mai —

p>— mwi —

p>— ast

T

p>— opc —
S>— aim —

personal assistant comm.
travel-agent comm.
personal assistannt prot.
travel-agent prot.

Figure 5. The information gathering agent is adapted to
include functionality on a language and protocol for in-
teraction with the travel agent.

First the new components are inserted into the concep-
tual description of the agent. Once this has been
achieved successfully, the operational parts of the com-
ponents are inserted into the operational description of
the agent.

4.2 Deep adaptation

In another example in Section 2, one of the needs for
adaptation arises from communication with a bank



agent. This agent requires that the information gathering
agent uses specific security functionality. Again, the
information gathering agent uses the multi-agent factory
to have itself adapted.

The multi-agent factory now has two goals in adapting
the information gathering agent. Specific security func-
tionality needs to be added, and functionality for under-
standing a language and protocol shared with the bank
agent. The latter case has been described in the previous
subsection.

Adapting the information gathering agent to include
specific security functionality is translated by the muilti-
agent factory to the need to adapt the agent to include
functionality for secure communication and secure co-
operation (as in both processes security-related aware-
ness is needed). Two templates have been retrieved from
the library available to the multi-agent factory: a tem-
plate for secure communication and a template for se-
cure co-operation. Both templates can be used together,
as can be derived form their characteristics, and both
templates can be embedded in the current configuration
of templates and components.

information gathering

PEREEE
LA AL L L
A?A?AAA

secure secure
comm. coop.

E E E B8 B b
E E € &5 & &
S 6 9 S 4 o
O O O ¢ © ¢
g 8 E 8 & %
T © 9 92 © ©
= D O ‘» _L 0
V © ®© O T X
m L . © S <
n 0 X — © ®©
T > £ ®© = Q9
s 8 8 5 7
s~ ¢
4 g

(]

o

Figure 6. The information gathering agent is adapted to
include functionality on secure communication and co-

operation, and functionality on understanding alan-
guage and protocol for interaction with the bank agent.

Asis shown in figure 6, the information gathering agent
is modified in a non-trivial manner: the two new tem-
plates are inserted into two of the open slots of the top-
most template, and the origina fillings of these open
slots are inserted into the open slots of the new tem-
plates.

5  Feasbility

The feasibility of the multi-agent factory hinges on a
number of aspects. These aspects are briefly described in
Section 5.1. A comparison of the multi-agent factory to
other approaches in constructing agents in described in
Section 5.2.

5.1 Crucial aspects

A number of aspects are crucia to the feasibility of the
multi-agent factory. These aspects are mainly concerned
with templates and components. Inserting templates or
components in an open slot of a template or component
involves understanding

? the properties associated with the open slot, which
prescribe properties of the entities to be inserted,

? how properties relate to each other,

? how the conceptual description of the template or
component to-be-inserted, can be connected to the
open slot (this may involve a mapping between two
different conceptual description languages),

? how the operational description of a template or
component to-be-inserted, can be connected to the
open slot (this may involve a mapping between two
different operational description languages), and

? how multiple components can be inserted into one
open slot (cf. to stacking blocks), especially when
different description languages are employed.

Experience with the current prototype has increased
confidence in the feasibility of the multi-agent factory,
but more research is needed (and is being conducted).

5.2 Comparison to other approaches

The multi-agent factory is compared to component-based
development, agent construction kits, software reusabil-
ity, case-based reasoning, and configuration design.



The multi-agent factory's approach to combining tem-
plates and components seems similar to the approach
taken in component-based development (CBD) of soft-
ware (Hopkins, 2000; Sparling, 2000). One distinction
with our approach is that our approach includes annota-
tions of templates and components at two levels of ab-
straction (conceptual and operational). In cBD, interfaces
are described for components (which are independent of
an operational language); this correlates to the open slots
in templates and components. From our perspective CBD
provides a useful means to describe operational descrip-
tions of the building blocks used by the multi-agent fac-

tory.

Currently a relatively large number of tools and/or
frameworks exists for the (usually semi-automatic) crea-
tion of agents (not automated adaptation). Examples
include e.g. AgentBuilder (Reticular Systems, 1999),
D'agents/AgentTCL (Gray, Kotz, Cybenko, and Rus,
1997), and ZEUS (Nwana, Ndumu, Lyndon, and Callis,
1999). All of these approaches commit to a specific op-
erational description of agents, and usually also commit
to a specific conceptual description of their agents. The
multi-agent factory does not make such commitments,
which makes the multi-agent factory more general pur-
pose (with all the common advantages and disadvan-

tages).

The multi-agent factory aims at pragmatically circum-
venting a number of issues related to software reusability
(e.g., Biggerstaff and Perlis, 1997). A major problem is
annotating reusable pieces of software such that they can
be retrieved at a later time (by other people) and reused
with a minimal number of changes. In the multi-agent
factory the latter is endeavoured as well. The former is
currently solved in a pragmatic way: templates and com-
ponents are annotated, and, when needed, a mapping is
provided to other annotations. This, however, is not a
scalable solution, and, as such, one of our current foci of
research. An important decision concerning standardi-
sation is that the multi-agent factory does not aim to
adhere to one specific standard, but a number of stan-
dards.

In case-based reasoning approaches (e.g., Kolodner,
1993; Watson and Marir, 1994) libraries of cases are
consulted to find a case which matches a problem, upon
which the retrieved case is adapted. This approach dif-
fers from the multi-agent factory in that cases are modi-
fied internally, instead of combined with other cases.
Techniques for retrieving cases from case libraries are,
of course, relevant to retrieving templates and compo-
nents from libraries.

The approaches taken by design-as-configuration (e.g.,
as described in (Stefik, 1995), CommonKads (Schreiber,
Akkermans, Anjewierden, de Hoog, Shadbolt, van de
Velde, and Wielinga, 1999), and elevator configuration
(Schreiber and Birmingham, 1996)) focus on construct-
ing a satisfactory configuration of elements on the basis
of a given set of requirements (also named: constraints).
In most of these approaches no explicit manipulation of
requirements is present, nor is a multi-levelled descrip-
tion of the elements taken into account. Models and
theories on configuration-based design are relevant to
the multi-agent factory, in particular to the processes
involved in combining conceptual and operational de-
scriptions.

6 Discussion

An automated servicing process for agent adaptation is
described in this paper. This servicing process is realised
by a multi-agent factory. Agents are constructed from
templates and components. Adapting an agent entails
adapting the configuration of templates and components.

The five assumptions underlying our approach are: (1)
agents have a compositional structure, (2) re-usable parts
of agents can be identified, (3) two levels of descriptions
are used: conceptual and operational, (4) properties and
knowledge of properties are available, and (5) no com-
mitments are made to specific languages and/or ontolo-
gies.

The main advantage of a multi-agent factory as an
automated servicing process is that an agent can easily
obtain new functionality, without obliging the agent it-
self to have its own adaptation mechanism. During their
lifetime agents acquire new skills and knowledge.

The multi-agent factory is still being researched; the
current research focuses on:

? building alibrary of templates and components,

? designing description languages for properties of,
and knowledge on the use of, templates and compo-
nents,

? learning from experiences with different conceptual
and operational description languages,

? designing and implementing more extensive proto-
types of the multi-agent factory,

? investigating security and trust in using a multi-agent
factory.



Acknowledgements

The authors wish to thank the graduate students Hidde
Boonstra and David Mobach for their explorative work
on the application of a multi-agent factory for an infor-
mation retrieving agent.

Refer ences

G. Booch. Object oriented design with applications.
Redwood City: Benjamins Cummins Publishing
Company. 1991.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. Frystyk Nielsen, S. Thatte, D. Wi-
ner. Simple Object Access Protocol (SOAP) 1.1.
W3C Note, http://www.w3.0org/TR/SOAP/, 08 May
2000.

V. R. Benjamins. Problem-Solving Methods for Diagno-
sis and their Role in Knowledge Acquisition. Inter-
national Journal of Expert Systems. Research &
Applications, 8(2):93-120, 1995.

T. J. Biggerstaff, and A. J. Perlis (eds.). Software Reus-
ability. Volume 1, Concepts and models. New Y ork:
ACM Press, 1997.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E.
Maler. Extensible Markup Language (XML) 1.0,
(Second Edition), W3C Technical Report 20001006,
http://www.w3.0rg/TR/2000/REC-xml-20001006,
2000.

F. M. T. Brazier, J. M. Jonker, and J. Treur. Modelling
project coordination in a multi-agent framework. In:
Proc. Fifth Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WET
ICE'96. Los Alamitos. |IEEE Computer Society
Press, pp. 148-155, 1996.

F. M. T. Brazier, C. M. Jonker, and J. Treur. Principles
of Compositional Multi-agent System Development.
In: J. Cuena (ed.), Proceedings of the 15th IFIP
World Computer Congress, WCC'98, Conference on
Information Technology and Knowledge Systems,
IT& KNOWS98, pp. 347-36, 1998.

F. M. T. Brazier, C. M. Jonker, and J. Treur. Composi-
tional Design and Reuse of a Generic Agent Model.
Applied Artificial Intelligence Journal, 14:491-538,
2000.

F. M. T. Brazier, C. M. Jonker, J. Treur, and N. J. E.
Wijngaards. Deliberate Evolution in Multi-Agent
Systems. In: J. Gero (ed.), Proceedings of the Sxth
International Conference on Al in Design,
AID'2000. Kluwer Academic Publishers. pp. 633-
650, 2000.

H. H. Bui, D. Kieronska, and S. Venkatesh. Learning
other agents' preferences in multiagent negotiation.
In: Proceedings of the National Conference on Ar-
tificial Intelligence (AAAI-96), pp. 114-119, 1996

D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M.
Erdmann, and M. Klein. OIL in a nutshell. In: R.
Dieng (ed.), Proceedings of the 12th European
Workshop on Knowledge Acquisition, Modelling,
and Management (EKAWOO0), Springer-Verlag,
Lecture Notes in Artificial Intelligence, 1937:1-16,
2000.

R. Gray, D. Kotz, G.e Cybenko, and D. Rus. Agent Tcl.
In. W. Cockayne, and M. Zyda (eds), Mobile
Agents: Explanations and Examples, Manning Pub-
lishing, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of reusable object-oriented
software. Reading, Massachusetts: Addison Wesley
Longman, 1994.

J. Hopkins. Component Primer. Communications of the
ACM, 43(10):27-30, 2000.

M. A. Jackson. Principles of Program Design, Academic
Press. 1975.

M.A. Jackson. Software Requirements and Specifica-
tions. Wokingham, England: Addison-Wesley,
1995.

J. L. Kolodner. Case-Based Reasoning. San Mateo,
California: Morgan Kauffman, 1993.

H. Nwana, D. Ndumu, L. Lyndon, and J. Collis. ZEUS:
A Tookit and Approach for Building Distributed
Multi-agent Systems. In: Proceedings of the Third
International Conference on Autonomous Agents
(Autonomous Agents 99), pp. 360-361, 1999.

F. Pefia-Mora, and S. Vadhavkar. Design Rationale and
Design Patterns in Reusable Software Design. In: J.
S. Gero, and F. Sudweeks (eds.), Artificial Intelli-



gence in Design (AID’96), Dordrecht: Kluwer Aca-
demic Publishers, pp. 251-268, 1996.

R. S. Pressman. Software Engineering: A practitioner’s
approach. Fourth Edition, McGraw-Hill Series in
Computer Science, New York: McGraw-Hill Com-
panies Inc. 1997.

Reticular Systems Inc. AgentBuilder: An integrated
toolkit for constructing intelligent software agents.
White Paper, http://www.agentbuilder.com, Febru-
ary 1999,

A. J. Riel. Object-Oriented Design Heuristics. Reading
Massechusetts: Addison Wesley Publishing Com-
pany, 1996.

J. Rumbaugh, 1. Jacobson, G. Booch. The unified mod-
eling language reference manual. Reading, Massa-
chusetts: Addison Wesley, 1999.

G. Schreiber, H. Akkermans, A. Anjewierden, R. de
Hoog, N. Shadbolt, W. Van de Velde, and B. Wiel-
inga. Knowledge Engineering and Management, the
CommonKADS Methodology. MIT press, 1991.

G. Schreiber, and W. P. Birmingham (eds.). Special
Issue on Sisyphus-VT. International Journal of
Human-Computer Studies (IJHCS), 44, 1996.

S. Soltysiak, and B. Crabtree. Knowing Me, Knowing
You: Practical Issues in the Personalisation of Agent
Technology. In: Proceedings of the third interna-
tional conference on the practical applications of
intelligent agents and multi-agent technology
(PAAM98), London, 1998.

M. Sparling. Lessons learned through six years of com-
ponent-based development. Communications of the
ACM, 43(10):47-53, 2000.

M. Stefik. Introduction to Knowledge Systems. San
Francisco, Californiac Morgan Kaufmann Publishers
Inc., 1995

I. Watson, and F. Marir. Case-based reasoning: a review.
The Knowledge Engineering Review, 9(4):327-354,
1994,

N. Wells, and J. Wolfers. Finance with a Personalized
Touch. Communications of the ACM, Special Issue
on Personalization, 43(8):31-34, 2000.

R. J. Wieringa Requirements Engineering: Frameworks
for Understanding. Wiley and Sons, 1996.

H.-C. Wong, and K. Sycara. A Taxonomy of Middle-
agents for the Internet. In: Proceedings of the
Fourth International Conference on Multi-Agent
Systems (ICMAS2000), 2000.



