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Abstract We describe several principles for designing Actor-Agent Communities
(AAC) as collectives of autonomous problem solving entities (software agents and
human experts) that self-organize and collaborate at solving complex problems. One
of the main distinctive aspects of the AAC is their ability to integrate in a meaningful
way the expertise and reasoning of humans with different information processing
algorithms performed by software agents, without requiring a unique and complete
description of the problem and solution spaces.

1 Preliminaries

Many architectures for multi-agent systems have been proposed, each excelling in
one or more functional or non-functional parameters, such as distributed process-
ing, negotiation, response time, self-organization, etc. (see e.g. [2]). Nevertheless, if
one abstracts from specific functionality and implementation platform, agents can
be regarded as individual software programs which get activated by certain triggers
in their environment (be it user commands, or some sensor values). A multi-agent
system (MAS) can thus be regarded as a software program with different asyn-
chronous threads (the agents), which can be coordinated either globally or locally.
A distributed MAS is in principle only different form a MAS in that the individual
agents may run on different physical platforms. At this abstraction level the different
agent systems can be described by a single reference architecture, as proposed by
FIPA [8]. From an application perspective, all agent-based systems have a request-
response interaction model, where agents respond to requests from users (actors) or
other agents, and possibly react to the environmental context (see Fig. 1). In general
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Fig. 1 Generic interaction
model in MAS

this interaction can be replicated for a multitude of actors and agents. The auton-
omy of agents refers to their ability of performing some of the problem-solving
steps without requiring explicit input from a human operator. We address the use of
MAS for solving complex problems, where complexity refers to the solution pro-
cess, and not to the computational complexity of the algorithms. Complex problems
cannot be decomposed into a finite number of simpler problems that each be solved
by an algorithm, either because of lacking adequate models, or because it contains
uncomputable elements. The common approach to solving such problems relies on
approximations through heuristics (or more generally, on computing in the limit
[3]). In data-driven approaches these heuristics can in principle be found through
training and learning algorithms, provided that enough training data is available [5].
However, the utility of these solutions is mostly limited to classification problems.

In this work we propose a new approach to autonomous cooperative problem-
solving systems, where agents and humans form a problem-solving community.
Complex problems are detected, formulated and solved jointly by humans and au-
tonomous agents.

2 Actor-Agent Communities

Actor-Agent Communities (AAC) are socio-technical information systems that de-
liver a solution for otherwise intractable information processing problems. At the
highest abstraction level an AAC can be regarded as a collection of autonomous
problem-solving entities, with specific problem-solving capabilities resulting from
their individual knowledge (or world models), interaction modalities, and (limited)
capabilities and resources for information processing. A coherent behaviour can be
induced on an amorphous collection of such autonomous entities by assigning them
a common goal. This may be regarded as a set of quantities that describe a partic-
ular state of the environment (possibly including states of the entities themselves).
Depending on the richness and complexity of their respective world models, each
entity will maintain a particular (partial) representation of these goals. Problems can
now be defined as mismatches between a target state of the environment and an ob-
servation thereof. The entity that discovers a problem may not be able to solve it all
by itself, in which case other entities will be asked to contribute. Teams can thus be
formed whose purpose is solving that particular problem. In order for two or more
entities to be able to team up, their world model need to partially overlap (achieve
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Fig. 2 A simplified functional model for autonomous problem-solving entities

a ”common ground”). The initiation and completion of such self-organization is
only determined by the problem detected in the environment, the overlap in world
models, and capabilities of the entities.

3 A Functional Model for Autonomous Problem-Solving Entities

An autonomous problem-solving entity is defined as a set of inputs (sensors) and
outputs (actuators) and a set of states. A set of state transitions is defined as a func-
tion of a system goal, a system-specific world model, and the current inputs. The
goals are regarded as static parameters that define a target state of the system (i.e. the
environment and the entity itself). A state is characterized by a number of (heteroge-
neous) parameters, which the entity can measure or estimate, and whose meaning is
described semantically in the entity’s world model. A heterogeneous distance func-
tion is defined that allows the entities to detect and react to anomalies. The entity
tries to perform a sequence of predefined state transitions in an attempt to bring the
system to one of the desired states. A problem solving entity makes use of an ex-
plicit world model that consists of a set of labels for the sensed data, possible data
patterns, possible actions, etc., and the relationships between all these. In principle,
such a world model could be regarded as an ontology fragment (in fact it also con-
tains quantitative knowledge and complex functions). Both the goal of the entity and
the state of the environment can be represented by arbitrary semantic constructs of
tuples (concept, value) connected with any of the logical operators ∨, ∧, or . Values
are specified using relational operators (=, <, >, etc.).

Example: The input data for an agent is a video stream from a camera. The agent
can measure the average luminance of the observed scene, can detect multiple in-
stances of cars and people, and can map the apparent coordinates of the detected
objects on absolute geographical coordinates. This agent’s ontology fragment can
be described as in Fig. 3 by a minimal set of primary concepts (i.e. those that label
the physical quantities or objects which the agent can detect) and some useful gener-
alizations and abstractions. Some concepts are further generalized in some other on-
tology, which may remain unspecified (the “ext” connectors). The link between the
primary concepts and the physical interfaces of the entity is performed through pre-
defined algorithms (e.g. feature extraction, pattern recognition), which are regarded
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Fig. 3 Example of a local
ontology fragment

as implicit (or procedural) knowledge of the entity. A goal can be represented in this
case as a target state of the environment:

((Lighting, dark) ∧ ((Car, <1) ∨ (Person, <1))) ∨ ((Lighting, light) ∧ (Car, <10)
∧ (Person, <20)).

Once an anomaly is detected the entity selects and executes one of the predefined
algorithms for restoring the state of the system. From this perspective, the entity
behaves in a purely reactive manner. However, for complex problems it may not be
efficient, or even possible to define all the algorithms required for coping with all the
anomalies that the entity can detect. Recall from above that an environment model
describes not only relationships between the measured environment variables, but
also how they can be acted upon. This latter part of the world model (i.e. the causal
ontology, [7]) forms the basis on which the entity can select an appropriate behavior
given a certain state of the system. Ideally, such a causal ontology would establish
relationships between the available actuators of an entity and all its primary percep-
tual concepts, meaning that the entity is capable of influencing all the environmental
parameters that it can measure. This, of course, is not always possible, so some ac-
tions may need to be specified in a causal ontology fragment that links to external
ontologies.

Fig. 4 A causal ontology
fragment; external influences
are only exerted on primary
concepts (they interface with
the environment). The internal
causal relations are inherently
nave given the limited on-
tologies. “Override” allows
an external event to alter ran-
domly the behavior of this
entity.

4 AAC Self-Organization

As explained earlier, a goal can be formulated as a set of target states of a sys-
tem (i.e. environment and AAC entities) expressed as (heterogeneous) vectors. If
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an entity has m ≤ n primary concepts (see section 3) that describe the same state
parameters as m of the goal vector’s components, then the entity will acquire a sub-
goal which is a projection of the original set of target states on the m – dimensional
subspace defined by the set of overlapping state parameters. However, the problem
is more complex that just defining a linear map. Indeed, under the assumption that
each entity has an incomplete and independently generated world model, a direct
mapping between primary concepts is not a trivial task, as indicated by the ongoing
research in the field of semantic matching and ontology alignment (see e.g. [1], [4]).
Given the space limitations we do not extend the present discussion in this direction.
Assume that suitable methods exist for estimating similarities or inclusion relations
(e.g. subsumptions, intensions) between concepts. Obviously, finding these relations
is only possible when the local ontologies of the entities in a given community par-
tially overlap. For this reason this should be regarded as a hard requirement for the
design of an AAC. Assume therefore that the community goal, expressed as a set
of vector values indicating the desired states of the system, can be measured by
two entities (see Fig. 5). The state vectors of these entities may contain additional
parameters, and some other parameters may need to be provided by other entities
(indicated by the grayed boxes). Nevertheless, a community goal can in principle be
fulfilled when all state parameters can be measured, which means that all leaf nodes
in the goal splitting multi-tree represent primary concepts for those entities. In such
a case the community is perceptually complete. However, this does not mean that
the goal can be effectively fulfilled. In order for this to happen, it is necessary that
the participating entities possess the effectual capabilities required for bringing each
of the state parameters to a desired value. The analysis of the requirements for effec-
tual completeness is similar to that for perceptual completeness. The problem that

Fig. 5 Possible mappings
between state vectors

remains is how to cope with the absence of a unique ontology for the whole com-
munity. Although we have assumed earlier that bilateral semantic similarities can
be evaluated with existing techniques, it is still not obvious how a large number of
entities can meaningfully work together at solving a complex problem. To explain
this, we start by recalling that the goal vector is just a set of values corresponding to
a semantic construct within the ontology of a certain entity. When a different entity
tries to interpret this goal vector it actually parses the ontology of the originating
entity, and tries to match some of the concepts in the source ontology with concepts
in its own ontology. This second entity can derive a sub goal that it can fulfil either
by its own, or with the help of some other entities. In the latter case it generates an
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additional goal containing those elements of its local goal which it cannot directly
measure (i.e. are not primary concepts) and posts it as a new community goal. Even-
tually, if the community is perceptually complete, an entity will be able to fulfil a
sub-goal all by itself. Then the entity which formulated the higher level goal can
also fulfil a higher-level goal, and so on, up to the level of the original goal.

5 Discussion

The idea of integrating human users and software agents into a team is not com-
pletely new. In [6] Sycara and Lewis proposed a solution based on a set of special-
ized agents and a coordination framework where agents coordinate the communi-
cation between humans, but also contribute to the problem solving process. This is
achieved through a common knowledge model shared by all agents. Problem solv-
ing capabilities and resources, task decomposition and behaviours are all defined
at design time. An advertisement mechanism allows agents to find each other at
runtime and respond to collaboration requests. The system is very efficient in coor-
dinating multiple tasks and in coping with resource limitations, but requires a full
definition of a common knowledge model, tasks sets, and behaviours.

The AAC approach proposed here provides a truly decentralized solution for
a meaningful integration of human reasoning and software algorithms. The self-
organization is based on goal decomposition and partial overlaps of the world mod-
els of the AAC entities.
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